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ABSTRACT 
Conceptual design remains "unplugged" from other 
computer-aided design tasks. Engineers and designers 
continue to favor pencil and paper over computerized 
sketching tools. It has been suggested that one reason for 
this is the bewilderingly large range of options available to 
users of CAD tools. The simplicity of pencil and paper, it 
was argued, is a virtue, not a drawback. 

In this paper, we show that, in the hands of a skilled user, a 
pencil is a complex tool in itself, capable of several 
different modes of operation. We illustrate this versatility 
with examples from the field of mechanical engineering. To 
be competitive, computer-aided sketching tools must 
support the various operating modes which pencil and paper 
allows and skilled design engineers habitually use. We 
discuss to what extent this is already the case, and what 
further steps can be made towards this goal. 
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modeling. Input modes. 
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INTRODUCTION: PENCIL AND PAPER VS COMPUTER 
A pencil costs approximately €0.50; a tablet PC suitable for 
sketching costs over €1000. A pencil weighs 30 grams (1 
ounce); a tablet PC weighs over 50 times more. A pencil 
can be replaced immediately; replacing a computer is 
expensive and time-consuming. A pencil works straight out 
of the pocket; a computer takes five minutes to power up, 

and longer when being used for the first time. Why would 
anyone use a computer for sketching when pencils are 
available? 

Ideally, if current non-invasive computer-aided sketching 
(CAS) tools were genuinely comparable with actual paper 
and pencil, users would use them, since the computer 
provides other potential advantages. There is a broad 
consensus on some of the main advantages of computer-
based systems: 

• Work is easier to edit. 

• Work is easier to file. 

• Work is easier to interface to other applications. 

However, replicating all the capabilities of actual paper and 
pencil is not so easy. Pencils are surprisingly flexible: a 
pencil can be used without training by a novice user, but (as 
we shall show in Section 2) is nevertheless a powerful tool 
in the hands of an experienced user. In contrast, CAS tools 
can be bewildering to novice users, and several authors 
have suggested that it is this bewilderment which prevents 
the wider acceptance of CAS [1]. At the other end of the 
scale, it is sometimes tacitly assumed that CAS tools 
provide all the operating modes which an experienced user 
requires. As we shall show in Section 3, this assumption is 
questionable. 

For the computer to replace actual paper and pencil during 
conceptual design, its interface should become as “paper-
like” as possible (hence the goal of “menu-free” 
applications—paper has no menus). However, computers 
must interpret not only freehand drawings but also 
annotations, sketched commands and other interactions.  

Each of these distinct interactions can be regarded as an 
operating mode. As we shall show in Section 2, operating 
modes have been around for some time—they were not 
invented for CAS tools. However, in the context of CAS, 
the presence of distinct operating modes has been identified 
as a main cause of the unfriendliness of current virtual 
paper-and-pencil interfaces. Ideally, CAS systems should 
automatically detect changes of operating mode. 

In this paper we address the subject of operating modes in 
sketch-based modeling (SBM) environments. First, we 
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analyze the large variety of activities in actual pencil and 
paper scenarios. Next we review the related works in virtual 
sketch-based modeling. We conclude by highlighting the 
main problems still unsolved. 

MODES IN REAL PAPER-AND-PENCIL SKETCHING 
In this paper, an activity is a set of actions which 
accomplish a job. A task is a member of such a set. Two 
main activities are commonly perceived while designers 
sketch in the considered domain of conceptual design of 
engineering products: inking and erasing. However, we 
shall see that a more detailed analysis of sketching process 
reveals the existence of further important activities and sub-
activities. 

 
Figure 1. Auxiliary lines “scaffolding” a complex shape 

Inking modes 
Sketches are usually drawn iteratively. The initial lines 
create a simple skeleton or scaffold to hold the desired 
shape. The process is illustrated in the sequence depicted in 
Figure 1, where it can clearly be seen how the initial 
parallelepiped shapes are used as frames to draw the 
cylindrical shapes, which in turn are complemented with 
other cylindrical shapes and flippers. 

The sequence is shown in separated images for clarity, but 
in real sketching, all three figures would have been 
superimposed (Figure 2). 

 
Figure 2. Auxiliary lines “scaffolding” a corner plate 

Designers are not confused by their own superimposed 
lines, as they compare the drawing with their own mind’s 
eye model. They distinguish main from auxiliary lines, 
usually through thickness: thick lines are main lines, and 
thin lines are auxiliary ones. The way to switch from thin to 
thick lines varies. Some designers change from hard tip 
pencils (e.g. 2H type) to soft ones (e.g. 2B). Others, instead, 
use the same pencil, and simply modify the pressure: high 
pressure for thick lines and low pressure for thin ones. 

One important fact to note here is that switching from thin 
to thick lines changes the operating mode. Regardless of 
how the change is effected, drawing thin lines is 
“scaffolding”, and drawing thick lines is “highlighting”. 
The distinction is obviously rooted in perception: readers 
may clearly distinguish the two cylinders drawn in the 
upper part of Figure 1 as noticeably independent from, and 
more important than, the parallelepiped scaffolding that 
surrounds them. 

Another important fact to be noted is that switching 
between both modes does not interrupt the ideation flow. 
On the contrary, we assume that the physical act of 
increasing pressure or switching pencils for highlighting 
some lines helps designers to “reinforce” their ideas [2]. 
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The strategy of switching between scaffolding and 
highlighting is clearly perceivable for simple representation 
of engineering parts, where most if not all thin lines are part 
of the skeleton. Unfortunately, discrimination between 
modes is not always so easy: first because attributes are not 
always consistently maintained, and second because the 
same attribute may be shared for different purposes. Figure 
3 shows an example where thin lines are indistinctly used to 
represent construction lines, hidden lines and axes. In 
computer science terminology, the thin line action is 
overloaded. Worse, the thin line action is not used 
consistently, as some (but not all) hidden lines are drawn 
using dashed lines, and some axis lines are drawn using 
dash-dot lines. However, humans perceive the different 
meanings and make sense of the whole drawing. 
Consequently, their experience of reading drawings helps 
them distinguish between scaffoldings and drawing axes. 
And the same happens between visible and hidden edges. 

 
Figure 3. Auxiliary lines “scaffolding” a corner plate 

According to accepted drawing standards, hidden edges and 
contours should be always represented by dashed lines, 
whether thin or thick. Obviously, using dashed lines for 
representing hidden edges is “highlighting the rear side”, as 
they convey information about occluded edges. So, 
switching from continuous to discontinuous lines visualizes 
the change of activity that happens when the mind’s eye of 
the designer moves from the front to the rear side of the 
part. However, Figure 3 shows clearly that designers may 
switch their minds from visible to hidden edges, without 
switching the hand from continuous to discontinuous lines. 
One plausible reason for not using dashed lines is simply 

that drawing discontinuous lines slows down the inking task 
and breaks the ideation flow. Even so, designers like to see 
some visual difference, so they change from thick to thin 
lines (which are faster to draw than dashed lines). 

This overloading of thin lines does not bewilder designers, 
who interpret correctly their own drawings as they are 
linked to their memories. But what about other observers 
who must interpret the finished drawing? While the 
drawing does not explicitly communicate the meaning of 
individual thin lines, it appears that the human ability to 
perceive 3D structures from 2D drawings [3] allows 
observers to disambiguate hidden lines and scaffolding 
lines. This means that the change of mode actually happens 
in the human vision process, not on paper, as it is deeply 
linked with our perception of depth. 

Axes differ from scaffolding, in that they convey different 
and sometimes richer information. They not only help in 
fixing the position of some particular lines, but are signals 
of the existence of some kind of complex relationships, 
such as axis of revolution or plane of bilateral symmetry. 
Again, designers find it useful to draw such lines with a 
different but fast line type (i.e. thin continuous line), instead 
of the standardized, slow-to-draw dash-dot thin line which 
should properly be used. However, other observers still 
succeed in assigning the right role to such lines, since (for 
example) they perceive the existence of revolved elements 
and, consequently, interpret the auxiliary line as a 
revolution axis, or detect a bilateral symmetry and interpret 
the auxiliary line as a bilateral symmetry axis. 

Overtracing or redrawing is a natural way in which 
designers allow designs on paper to interact with designs in 
their minds [4]. Examples of overtracing can clearly be seen 
in the sketched part of Figure 3. Overtracing appears in 
both scaffolding and highlighting, and is different both 
visually and conceptually from highlighting. Highlighting 
specifically produces tidied line drawings over “dirty” 
scaffolding lines. Overtracing is more flexible. It has been 
interpreted by some authors as a strategy for preserving the 
designer’s mental image of the object [5]. In fact, we can 
distinguish different kinds of overtracing: decoration 
(introducing shadows, textures and so on), thinking over the 
line (thinking about the design without stopping the inking 
process) and auto-correction (perceiving that the line is 
being drawn with error and trying to correct it on the fly). 
Overtracing for decoration conveys extra information (e.g. 
curvatures), while thinking and auto-correction overtracing 
should be interpreted as simple lines. 

The simplest kind of overtracing for decoration is that of 
hatching cross-sections. If carefully executed it is easy to 
perceive (Figure 1 bottom), but this clearly slows down the 
drawing process. In practice, it is commonly done 
carelessly (as can be seen in Figures 2 and 4). Hence, it may 
be mistaken with other types of overtracing (i.e. differences 
between hatching and other types of overtracing in Figure 4 
are very subtle and rely mainly on the context). 



 

Several other operating modes are visible in the detail of a 
timber roof given in Figure 4, where different types of thin 
lines appear as “bubbles” that delimit areas which require 
greater detail, in symbols such as “+”, which conventionally 
represents the head of a nail, and even in the arrows which 
tie annotations to the specific part of the drawing being 
annotated. 

Despite this extreme overloading of line types, Figure 4 
remains comprehensible. Something must be there 
implicitly helping the observer to disambiguate such lines. 
Our hypothesis is that this “something” contains at least 
three components: (a) the context (the human ability to 
interpret 2D drawings as representing 3D objects, as 
mentioned before), (b) a formal code (obviously, the code 
for engineering drawings is in the drawing standards, ISO, 
ASME, EN), and (c) an informal convention, the culture of 
engineering drawing practice passed down from teacher to 
student [6]. Effectively, we do after all have a “mode 
switch” to change between different interpretations of thin 
lines, but this mode switch exists in the mind of the 
observer as a collection of rules, experiences and 
inferences, not in the tools (paper and pencil) which the 
designer used to create the drawing. 

 

 
Figure 4. Annotating an engineering sketch 

Finally, another interaction mode appears in Figure 4: text. 
Some text labels are simply names, but other text labels 
convey detailed information that would otherwise require 
high quality drawings. 

It is also worth noting that Figure 4 contains an informal 
mixing of an orthographic view (complemented with a 
detailed view) with a pictorial view. 

It will be noted that none of the drawings above uses color. 
The historical reason was the difficulty of obtaining copies 
of colored documents (e.g. blueprints were just blue and 
white). Hence formal codes were developed which 

excluded color. Nowadays, there is no reason why color 
could not advantageously be used in some circumstances 
without compromising the advantages of pencil and 
paper—colored pencils are not much more expensive than 
plain graphite pencils, and are just as portable. 
Nevertheless, design engineers do not use them. This 
reinforces our hypothesis that culture is an important factor 
in creating and interpreting drawings. Colored pencils are 
simply not part of the design engineer’s culture. 

To sum up our analysis of inking modes, we find that many 
different inking activities add value to the drawing: inking 
construction lines (“scaffolding”); inking main lines 
(“highlighting”); inking hidden edges (“highlighting the 
rear side”); inking axes; hatching; overtracing for 
decoration, and annotating. 

Editing modes 
Erasing is the clearest example of editing task. Erasing is 
clearly different from inking. The designer even requires a 
different instrument to erase (e.g. the rubber eraser, or the 
correction fluid visible in the inner circles of Figure 5). 

 

 
Figure 5. Sketch of a tape roller corrected with correction 

liquid 

Changing the instrument is an obvious cue to a change of 
mode. Again, the physical action of changing tools does not 
interrupt the ideation flow. The designer realizes that the 
sketch contains an error and voluntarily starts an action to 
correct it. Or, the designer realizes that the sketch is too 
messy and contains too many unnecessary lines, and starts 
an action to clean it. In both cases, the physical action runs 
in parallel with the mental flow, and does not interrupt it. 

Cut and paste is another common editing action. Most 
design sketches are created during ideation stages. In fact, 
one of the main purposes of engineering sketches is to help 
the designer to fix the detailed design. Paradoxically, the 
sketches become messy and disordered at the same time as 
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the designer reaches in his mind’s eye a clear and detailed 
design. At this point, a clean and tidy sketch would be 
helpful to share the detailed design with others. Some 
designers use “hard” cut and paste to create a “collage”. 
Again, the creation of the patchwork means a change of 
mode of interaction between the user and the paper, and 

requires different tools (scissors and tape). And, again, this 
change of mode does not interrupt the ideation process. On 
the contrary, it helps the designer to freely clean and tidy up 
the image when he or she likes. Figure 6 shows a 
photographic image of one such a patchwork, in which the 
cut and paste process remains visible. 

 

 
 

Figure 6. Sketch of a vise rearranged with hard cut and 
paste (notice the tape) 

 
 

 
 

 
 

Figure 7. Sketch of a vise tidied up by a suitable b/w 
scanning 

 

Figure 7 shows the tidied appearance of the vise plan after 
photocopying it with black and white quality, i.e. after 
“filtering” it. Again, the availability of the required tool 
(photocopying machine in this case) is the major factor 
limiting those editing modes that have been described as 
commonplace for designers and architects [5]. 

Other activities such as copying with symmetry are less 
frequent, simply because they are more sophisticated. For 
example, obtaining bilateral symmetry involves 
photocopying over a transparent sheet and then 
photocopying again after pasting the original with the 
reversed copy. Hence, the copy-reverse-and-paste is only 
done when the drawing is very complex, or the final version 
is required. Figures 8 and 9 show an example where an 
incomplete sketch was used to obtain a tidied and complete 

sketch, by simply copying some features that had been 
drawn one time in different locations. 

The copies were done though transparent paper 
superimposed and conveniently displaced over the original 
drawing. Otherwise, the symmetry should have been 
indicated through the suitable axis and/or annotation, but 
the final shape would have never been drawn. 

Again, we conclude that editing activity is commonly 
subdivided into erasing, cut and paste and other activities 
only limited by the “hardware” availability (rubber eraser, 
scissors and tape, photocopying machine, etc.). 

 

 



 

 
Figure 8. Original incomplete sketch of a symmetric part. 

 
Figure 9. Part drawing completed by a “copy and paste” 

done though a transparent paper superimposed and 
conveniently displaced over the original drawing 

STATE OF THE ART IN CAS TOOLS 
Sketch-based interfaces aimed at computer-aided 
conceptual design were launched in parallel with the early 
development of CAD tools addressed at aiding during 
detailed design stages. Important early contributions by 
Negroponte and Herot can be found back in the 70’s [5, 7, 
8]. Nevertheless, the conclusion, according to the same 
Herot [9], was that any further advances in sketch 
recognition would require both advances in hardware 
(which have happened) and advances in artificial 
intelligence (which, in general, have not happened). Hence, 
it was not until the 90’s, with the advent of appropriate 
hardware (e.g. tablet PCs), that the “sketch-based 
modeling” concept began to grow through works like those 
by Egglí et al. [10] and Turner et al. [11]. 

Non-invasive sketch-based applications that assist users 
during conceptual design stages are called “paper-like” [2] 
“magic paper” [12], or “virtual paper and pencil”. We refer 
the reader to two recent papers, [13] and [14], which 
respectively discuss the states of the art of sketch 
understanding and sketch-based modeling. 

User studies (e.g. [15]) assert that current computer CAS 
tools are still less usable than paper-and pencil sketches and 
do not posses significantly improved functionality. We 
believe that replicating as many as possible of the actual 
operating modes used in a paper and pencil environment, 
and switching between them in a natural way, would be 
helpful in reducing the gap. 

Operating modes 
Operating modes distinguish the various configurations 
under which the same device works to produce different 
effects or perform different tasks. 

In considering inking modes, any reasonable sketching tool 
will supply a variety of these. The important ergonomic 
question is: how invasive is the mechanism for switching 
between these modes? 

Two distinct paradigms continue to dominate human-to-
computer interaction: command-driven (such as UNIX’s 
shell) and menu-driven (such as Window’s Explorer). 
Although menu-driven systems are simpler and easier to 
learn, they are generally not as flexible as command-driven 
systems. Hence, with the advent of handwritten text 
recognition and sketch-based input interfaces, the paradigm 
has been that of so-called “menu-free” applications where 
interaction takes place via hand-sketched commands. 

Which is more appropriate to CAS? True command-driven 
interfaces such as shell are marketed at advanced users, not 
at beginners. However, given the limitations of OCR, 
handwritten interaction is greatly restricted as compared 
with such interfaces. It is not clear what community would 
find such a reduced command-driven interface useful. 

In contrast, menu-driven interfaces are marketed at relative 
beginners (although, can be seen from the existence of 
commercial training courses which train people to use 
menu-driven software, they are in reality far from ideal for 
true beginners). There is clearly a market niche for very 
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simple interfaces for true beginners, and sketch-based 
interfaces could reasonably fill that niche. 

What is missing is an interface paradigm which would suit 
experienced design engineers. Identifying such a paradigm 
is a difficult task in itself. We can take an initial step in this 
direction by analysing what the two current dominant 
paradigms have to offer. 

The two paradigms have different approaches to switching 
between activities. In a menu-driven environment, menus 
are usually arranged in groups and sub-groups and visually 
presented in sub-menus or toolbars. Selecting a menu 
command or toolbar button automatically switches to the 
corresponding activity. One advantage of this paradigm is 
that two unrelated tasks with similar names should never be 
confused, as the user selects them from different 
activities/toolbars. 

In menu-free applications, the user interacts with the 
computer through gestures, graphic symbols that convey 
messages. Supposedly, the message conveyed by each 
gesture is intuitive and unambiguous. Gestures convey 
commands, but do not usually convey activity switching. 

It is generally accepted that the only way to avoid, or at 
least minimize, explicit user involvement during sketch 
interpretation is feeding the system with extra-knowledge. 
The easiest available extra knowledge is the drawing 
sequence, which has sometimes been assumed to convey 
the user’s drawing style [5]. Drawing sequence is widely 
used in the low-level recognition of drawn symbols and 
spatial relations among them, e.g. [16] and, as an essential 
part of Chinese character recognition, has received much 
attention in the field of OCR [17]. Feature based gesture 
recognition methods coexists with approaches that rely 
mainly on sequence information. Kawatani’s work, like 
everything else which processes Chinese characters, uses 
stroke order. [18] and [19] represent recent work, more 
directly related to sketch-based modeling, which also 
identifies symbols through sequential information. But, as 
was stated long ago [7], more extra knowledge is needed. 

Knowledge about both domain and activity are commonly 
used to greatly improve the success ratio of current sketch-
based modeling systems. Domains are usually used to 
constraint the universe of solutions. Some domains 
considered in the literature are: two-and-one-half 
dimensional engineering parts [20]; tree diagrams, rooms, 
and poly-lines [Gro94]; and GUI’s [21]. Recently, some 
approaches have been claimed to be domain-independent 
(e.g. LADDER, [18, 22]), and certainly they can be 
customized for different domains, using a “domain specific 
sketch grammar”. However, developing a customizable 
computational approach does not mean that domains do not 
exist. On the contrary, they implicitly accept that different 
domains exist and their differences affect the SBM flow. 

Activities and their consequent operating modes have also 
been considered in the SBM literature. For instance, the 

SILK approach ([21, 23]) explored electronic sketching 
aimed at conceptual design stages. SILK includes both text 
and graphics, and uses a “controls window” to change 
modes and perform editing operations on the sketch. 
However its domain is the design of GUIs [24], and it only 
deals with sketches of 2D figures. Plimmer and Apperley 
[25] in its pursuit of a “deliberate minimalist environment” 
distinguished three modes: drawing, handwriting and 
editing. Hammond and Davies [18] discriminate between 
“sketching (pen gestures intended to leave a trail of ink) and 
editing gestures (pen gestures intended to change existing 
ink)”. Comparing these limited lists of modes with the 
variety described in Section 2, we can conclude that further 
work is required. 

The unsolved problem of replacing the switching strategy 
implicit in the menu arrangement by a transparent, easy-to-
use one in the context of menu-free systems is perhaps the 
key to obtain a fluent interaction. To this end, different 
strategies have been suggested. For example, [26] use 
gestures to issue commands to their sketching tool. 
However, switching between different operating modes 
uses a different mechanism, that of changing color. At 
present, their work is limited to two colors, but there is no 
reason in principle why it could not be extended to more. 
Whether (a) color would be culturally acceptable to design 
engineers, who are accustomed to working in monochrome, 
and (b) how a system would react to “deliberate mistakes” 
such as those in Figure 3 where thin lines are used to 
represent hidden edges and axes, remain open questions. 

One particularly interesting example is the “lasso and tap” 
approach of LaViola and Zeleznik [27, 28], which lets users 
associate handwritten mathematics with free-form 
drawings. The lasso plus erase and lasso plus copy and 
paste have proved to be extremely useful in shortening the 
drawing process in a system aimed at pre-processing 
structural information [29]. 

Additional features in virtual paper and pencil 
Obviously, there are things which can be done on a 
computer which cannot be done using pencil and paper. We 
have already mentioned filing and interaction with other 
applications. 

For example, many CAD applications support the useful 
tasks of extruding and sweeping 2D profiles to produce 3D 
objects. This would clearly be useful, for example when 
processing the counterbored holes in Figure 9 to create a 
solid model. 

When discussing Figure 8, we noted that enforcement of 
symmetry was rarely done in a pencil and paper 
environment, not because design engineers do not want to 
do it (they do) but because the tools available in that 
environment do not readily support it. Creation of bilateral 
symmetry is straightforward in CAS (after drawing half an 
object, the user marks a mirror plane, and the system 
creates the rest of the object by reflection through the 



 

mirror plane), and this is one area where CAS is clearly 
superior to pencil and paper. 

Despite these additional features offered by computer 
environments, it remains the case that they will not 
supersede pencil and paper until they are competitive with 
its core actions, those described in Section 2. 

POSSIBLE ADVANCES 
The final goal is designing a computer-based (i.e. “virtual”) 
paper-and-pencil environment that equals or surpasses 
actual paper and pencil, in order to get most designers to 
abandon actual in favor of virtual paper and pencil for 
conceptual design purposes. 

To this end, the strengths of actual paper and pencil should 
be replicated in the virtual scenario. Specific strengths of 
actual paper and pencil not yet fully replicated in the virtual 
paper may require hardware improvements. For example, 
tablets have been reported to be less comfortable to use than 
pencil and paper because of the small gap (both in time and 
distance) between the cursors and the pencil tip [15]. 

Additionally, corresponding improvements in the software 
are also required: use and maintenance of computers still 
requires technical knowledge that some designers, quite 
rightly, do not see as part of their job. When starting a new 
virtual drawing becomes as simple as taking a new physical 
piece of paper from a pad, designers may be persuaded to 
look on computers as a tool rather than an obstruction. 

Apart from trying to give users more freedom in inputting 
and editing in a virtual paper and pencil scenario, two other 
advances seem relevant and accessible: replicating as many 
modes as possible from actual paper and pencil, and finding 
the best mode-switching strategies. 

Advances in replicating modes 
We still require a full taxonomy of operating modes, 
including their mutual relationships and descriptions of 
cues used to discriminate between them. The list in Section 
2 is illustrative of the nature of the problem, but far from 
exhaustive. 

Designers usually distinguish main from auxiliary lines 
through thickness: thick lines are main lines, and thin lines 
are auxiliary ones. Automatic interpretation of such 
sketches (like Figure 2) should require some sort of strategy 
to distinguish auxiliary lines from main lines, similar to the 
ones employed for SBM overdrawing approaches [30]. 

Some researchers have suggested that sequence may help in 
discovering the most important lines, e.g. “presuming that 
the most recent lines are the most intended” [5]. However, 
humans routinely interpret drawings without knowing the 
drawing sequence. 

Other researchers have developed virtual drawing 
environments sensitive to pressure. This has proved useful, 
but some problems remain unsolved: 1) some devices are 
insensitive to pressure; 2) some designers do not use 

pressure to distinguish between thin and thick lines 
(preferring, for example, different types of pencil); 3) 
overtracing is still difficult to distinguish from highlighting. 
Note that interpreting overtracing in freehand sketches (as 
per [31]) is a solved problem only for sketches that contain 
no auxiliary lines. 

Distinguishing the various possible implications of 
auxiliary lines will be more difficult. Some of this can be 
rule-based, incorporating the various engineering standards. 
But, as shown in Figure 3, such standards are not always 
followed—there are unofficial conventions as to which 
rules can be broken, and when. Engineering culture is an 
equally important factor, and one which has barely been 
investigated. The third important factor, the human vision 
process, has been the subject of many investigations, but 
few conclusions have been reached. 

Other interactions modes require combined efforts. 
Interpreting drawing labels from line drawings is more 
difficult than interpreting plain text, for several reasons. 
Firstly, labels use a particular syntax that prevents syntactic 
parsers from making the right choice when different 
plausible interpretations appear. Developing OCR parsers 
tailored to cope with such “telegraphic” messages written in 
engineering jargon would improve the success ratio of the 
recognition of engineering drawing labels. Secondly, labels 
of engineering drawings contain interspersed symbols—
they are closer to mathematical notation than to plain text. 
OCR tailored for mathematical formulations should 
perform better than general purpose OCR. The “shape 
descriptions” approach of [32] looks suitable. 

In conclusion, to obtain improved virtual paper-and-pencil 
scenarios, operating modes are required. The ideal is to find 
the optimum number of modes: a set which includes all 
those modes which designers require, and excludes all those 
which designers do not require. But optimization is 
different from the current paradigm of making them 
disappear: less is better, but nothing is worst! 

Advances in switching modes 
If each gesture replaces one menu-like command, gesture 
management becomes increasingly complex as the total 
amount of commands grows. The number of different labels 
in a menu-driven application has few practical limitations. 
The number of different icons in toolbars has more practical 
limitations: one cannot fill the entire screen with toolbars, 
as most of the area must remain available for drawing. 
Gestures, by contrast, are limited by our ability to recognize 
them and to distinguish between them. Misinterpretations 
and misunderstandings due to similarities between different 
icons or due to cultural differences between different users 
have been reported [33, 34]. 

Limiting the number of gestures that may be easily 
remembered and clearly distinguished from each other 
drastically reduces the total set of available commands. 
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Worse still, in some cases, only the context makes the 
difference between distinct useful gestures, or parts of a 
depicted figure. For example, differences between “zero”, 
“circle” or “lasso” do not depend on the shape itself, but on 
the context, including the scale (both absolute and relative 
to other nearby ink), the orientation (both absolute and 
relative to other nearby ink), and the interpretation(s) of 
other nearby ink. 

Two questions must be posed. Firstly, how many functions 
can be provided without buttons and menus? Secondly, how 
many functions does a design engineer require? If the 
second answer is larger than the first, we need a new 
paradigm. 

To sum up: recent approaches have recognized the need for 
friendly ways of changing modes in sketch-based 
environments, but none of them has proved to address the 
full control mode problem while being clearly better than 
the others. More importantly, none of them as yet beats 
actual pencil and paper. 

CONCLUSIONS 
It is obvious that computers will remain less cheap, portable 
and simple than pencil and paper. The undeniable 
advantages of computers (CAS tools make work easier to 
edit, easier to file, and easier to interface to other 
applications) do not as yet compensate for their inherent 
disadvantages. 

According to the dominant paradigm, paper-like interfaces 
are seen as the best way to get user-friendly computer 
applications which help engineers and designers during 
conceptual design stages. Modeless applications are 
assumed to be the goal. 

We argue here that full modeless applications are not the 
final goal. If we wish to replicate real paper-and-pencil 
scenarios in virtual environments, we must be aware that 
actual paper-and-pencil scenarios include a rich variety of 
different modes. 

To support our assertion that multiple modes are used for 
sketching engineering parts and assemblies with actual 
pencil and paper, we have described some typical actions 
commonly done by designers while sketching. 

In reviewing the current state of the art of virtual paper and 
pencil, we conclude that replicating paper-and-pencil 
scenarios in virtual environments is still unfeasible. 
Although the goals of CAS have supposedly already been 
accomplished, practical implementations have resulted in 
unfriendly interfaces. 

The way forward is (a) to replicate as many modes as 
possible from actual paper and pencil, and (b) to find a non-
intrusive switching strategy. Determining the real 
requirements through further field studies with actual 
designers seems a necessary first step in this direction. 
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