
 1

Operating modes in actual versus virtual paper-and-pencil
design scenarios

Pedro Company
Universitat Jaume I

Dpt. Mechanical Engineering and Structures
pcompany@emc.uji.es

+34 964728119

Peter Ashley Clifford Varley
Universitat Jaume I

Dpt. Mechanical Engineering and Structures
varley@emc.uji.es

+34 96472820

ABSTRACT
Conceptual design remains "unplugged" from other
computer-aided design tasks. Engineers and designers
continue to favor pencil and paper over computerized
sketching tools. It has been suggested that one reason for
this is the bewilderingly large range of options available to
users of CAD tools. The simplicity of pencil and paper, it
was argued, is a virtue, not a drawback.

In this paper, we show that, in the hands of a skilled user, a
pencil is a complex tool in itself, capable of several
different modes of operation. We illustrate this versatility
with examples from the field of mechanical engineering. To
be competitive, computer-aided sketching tools must
support the various operating modes which pencil and paper
allows and skilled design engineers habitually use. We
discuss to what extent this is already the case, and what
further steps can be made towards this goal.

Author Keywords
Engineering design. Conceptual design. Sketch-based
modeling. Input modes.

ACM Classification Keywords
H.1.2.b. Human-centered computing. H.5.2.f. Graphical
user interfaces. I.7.5.c Graphics recognition and
interpretation.

INTRODUCTION: PENCIL AND PAPER VS COMPUTER
A pencil costs approximately €0.50; a tablet PC suitable for
sketching costs over €1000. A pencil weighs 30 grams (1
ounce); a tablet PC weighs over 50 times more. A pencil
can be replaced immediately; replacing a computer is
expensive and time-consuming. A pencil works straight out
of the pocket; a computer takes five minutes to power up,

and longer when being used for the first time. Why would
anyone use a computer for sketching when pencils are
available?

Ideally, if current non-invasive computer-aided sketching
(CAS) tools were genuinely comparable with actual paper
and pencil, users would use them, since the computer
provides other potential advantages. There is a broad
consensus on some of the main advantages of computer-
based systems:

• Work is easier to edit.

• Work is easier to file.

• Work is easier to interface to other applications.

However, replicating all the capabilities of actual paper and
pencil is not so easy. Pencils are surprisingly flexible: a
pencil can be used without training by a novice user, but (as
we shall show in Section 2) is nevertheless a powerful tool
in the hands of an experienced user. In contrast, CAS tools
can be bewildering to novice users, and several authors
have suggested that it is this bewilderment which prevents
the wider acceptance of CAS [1]. At the other end of the
scale, it is sometimes tacitly assumed that CAS tools
provide all the operating modes which an experienced user
requires. As we shall show in Section 3, this assumption is
questionable.

For the computer to replace actual paper and pencil during
conceptual design, its interface should become as “paper-
like” as possible (hence the goal of “menu-free”
applications—paper has no menus). However, computers
must interpret not only freehand drawings but also
annotations, sketched commands and other interactions.

Each of these distinct interactions can be regarded as an
operating mode. As we shall show in Section 2, operating
modes have been around for some time—they were not
invented for CAS tools. However, in the context of CAS,
the presence of distinct operating modes has been identified
as a main cause of the unfriendliness of current virtual
paper-and-pencil interfaces. Ideally, CAS systems should
automatically detect changes of operating mode.

In this paper we address the subject of operating modes in
sketch-based modeling (SBM) environments. First, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI Workshop on Sketch Recognition 2009, February 8, 2009, Sanibel
Island, Florida, USA.

analyze the large variety of activities in actual pencil and
paper scenarios. Next we review the related works in virtual
sketch-based modeling. We conclude by highlighting the
main problems still unsolved.

MODES IN REAL PAPER-AND-PENCIL SKETCHING
In this paper, an activity is a set of actions which
accomplish a job. A task is a member of such a set. Two
main activities are commonly perceived while designers
sketch in the considered domain of conceptual design of
engineering products: inking and erasing. However, we
shall see that a more detailed analysis of sketching process
reveals the existence of further important activities and sub-
activities.

Figure 1. Auxiliary lines “scaffolding” a complex shape

Inking modes
Sketches are usually drawn iteratively. The initial lines
create a simple skeleton or scaffold to hold the desired
shape. The process is illustrated in the sequence depicted in
Figure 1, where it can clearly be seen how the initial
parallelepiped shapes are used as frames to draw the
cylindrical shapes, which in turn are complemented with
other cylindrical shapes and flippers.

The sequence is shown in separated images for clarity, but
in real sketching, all three figures would have been
superimposed (Figure 2).

Figure 2. Auxiliary lines “scaffolding” a corner plate

Designers are not confused by their own superimposed
lines, as they compare the drawing with their own mind’s
eye model. They distinguish main from auxiliary lines,
usually through thickness: thick lines are main lines, and
thin lines are auxiliary ones. The way to switch from thin to
thick lines varies. Some designers change from hard tip
pencils (e.g. 2H type) to soft ones (e.g. 2B). Others, instead,
use the same pencil, and simply modify the pressure: high
pressure for thick lines and low pressure for thin ones.

One important fact to note here is that switching from thin
to thick lines changes the operating mode. Regardless of
how the change is effected, drawing thin lines is
“scaffolding”, and drawing thick lines is “highlighting”.
The distinction is obviously rooted in perception: readers
may clearly distinguish the two cylinders drawn in the
upper part of Figure 1 as noticeably independent from, and
more important than, the parallelepiped scaffolding that
surrounds them.

Another important fact to be noted is that switching
between both modes does not interrupt the ideation flow.
On the contrary, we assume that the physical act of
increasing pressure or switching pencils for highlighting
some lines helps designers to “reinforce” their ideas [2].

 3

The strategy of switching between scaffolding and
highlighting is clearly perceivable for simple representation
of engineering parts, where most if not all thin lines are part
of the skeleton. Unfortunately, discrimination between
modes is not always so easy: first because attributes are not
always consistently maintained, and second because the
same attribute may be shared for different purposes. Figure
3 shows an example where thin lines are indistinctly used to
represent construction lines, hidden lines and axes. In
computer science terminology, the thin line action is
overloaded. Worse, the thin line action is not used
consistently, as some (but not all) hidden lines are drawn
using dashed lines, and some axis lines are drawn using
dash-dot lines. However, humans perceive the different
meanings and make sense of the whole drawing.
Consequently, their experience of reading drawings helps
them distinguish between scaffoldings and drawing axes.
And the same happens between visible and hidden edges.

Figure 3. Auxiliary lines “scaffolding” a corner plate

According to accepted drawing standards, hidden edges and
contours should be always represented by dashed lines,
whether thin or thick. Obviously, using dashed lines for
representing hidden edges is “highlighting the rear side”, as
they convey information about occluded edges. So,
switching from continuous to discontinuous lines visualizes
the change of activity that happens when the mind’s eye of
the designer moves from the front to the rear side of the
part. However, Figure 3 shows clearly that designers may
switch their minds from visible to hidden edges, without
switching the hand from continuous to discontinuous lines.
One plausible reason for not using dashed lines is simply

that drawing discontinuous lines slows down the inking task
and breaks the ideation flow. Even so, designers like to see
some visual difference, so they change from thick to thin
lines (which are faster to draw than dashed lines).

This overloading of thin lines does not bewilder designers,
who interpret correctly their own drawings as they are
linked to their memories. But what about other observers
who must interpret the finished drawing? While the
drawing does not explicitly communicate the meaning of
individual thin lines, it appears that the human ability to
perceive 3D structures from 2D drawings [3] allows
observers to disambiguate hidden lines and scaffolding
lines. This means that the change of mode actually happens
in the human vision process, not on paper, as it is deeply
linked with our perception of depth.

Axes differ from scaffolding, in that they convey different
and sometimes richer information. They not only help in
fixing the position of some particular lines, but are signals
of the existence of some kind of complex relationships,
such as axis of revolution or plane of bilateral symmetry.
Again, designers find it useful to draw such lines with a
different but fast line type (i.e. thin continuous line), instead
of the standardized, slow-to-draw dash-dot thin line which
should properly be used. However, other observers still
succeed in assigning the right role to such lines, since (for
example) they perceive the existence of revolved elements
and, consequently, interpret the auxiliary line as a
revolution axis, or detect a bilateral symmetry and interpret
the auxiliary line as a bilateral symmetry axis.

Overtracing or redrawing is a natural way in which
designers allow designs on paper to interact with designs in
their minds [4]. Examples of overtracing can clearly be seen
in the sketched part of Figure 3. Overtracing appears in
both scaffolding and highlighting, and is different both
visually and conceptually from highlighting. Highlighting
specifically produces tidied line drawings over “dirty”
scaffolding lines. Overtracing is more flexible. It has been
interpreted by some authors as a strategy for preserving the
designer’s mental image of the object [5]. In fact, we can
distinguish different kinds of overtracing: decoration
(introducing shadows, textures and so on), thinking over the
line (thinking about the design without stopping the inking
process) and auto-correction (perceiving that the line is
being drawn with error and trying to correct it on the fly).
Overtracing for decoration conveys extra information (e.g.
curvatures), while thinking and auto-correction overtracing
should be interpreted as simple lines.

The simplest kind of overtracing for decoration is that of
hatching cross-sections. If carefully executed it is easy to
perceive (Figure 1 bottom), but this clearly slows down the
drawing process. In practice, it is commonly done
carelessly (as can be seen in Figures 2 and 4). Hence, it may
be mistaken with other types of overtracing (i.e. differences
between hatching and other types of overtracing in Figure 4
are very subtle and rely mainly on the context).

Several other operating modes are visible in the detail of a
timber roof given in Figure 4, where different types of thin
lines appear as “bubbles” that delimit areas which require
greater detail, in symbols such as “+”, which conventionally
represents the head of a nail, and even in the arrows which
tie annotations to the specific part of the drawing being
annotated.

Despite this extreme overloading of line types, Figure 4
remains comprehensible. Something must be there
implicitly helping the observer to disambiguate such lines.
Our hypothesis is that this “something” contains at least
three components: (a) the context (the human ability to
interpret 2D drawings as representing 3D objects, as
mentioned before), (b) a formal code (obviously, the code
for engineering drawings is in the drawing standards, ISO,
ASME, EN), and (c) an informal convention, the culture of
engineering drawing practice passed down from teacher to
student [6]. Effectively, we do after all have a “mode
switch” to change between different interpretations of thin
lines, but this mode switch exists in the mind of the
observer as a collection of rules, experiences and
inferences, not in the tools (paper and pencil) which the
designer used to create the drawing.

Figure 4. Annotating an engineering sketch

Finally, another interaction mode appears in Figure 4: text.
Some text labels are simply names, but other text labels
convey detailed information that would otherwise require
high quality drawings.

It is also worth noting that Figure 4 contains an informal
mixing of an orthographic view (complemented with a
detailed view) with a pictorial view.

It will be noted that none of the drawings above uses color.
The historical reason was the difficulty of obtaining copies
of colored documents (e.g. blueprints were just blue and
white). Hence formal codes were developed which

excluded color. Nowadays, there is no reason why color
could not advantageously be used in some circumstances
without compromising the advantages of pencil and
paper—colored pencils are not much more expensive than
plain graphite pencils, and are just as portable.
Nevertheless, design engineers do not use them. This
reinforces our hypothesis that culture is an important factor
in creating and interpreting drawings. Colored pencils are
simply not part of the design engineer’s culture.

To sum up our analysis of inking modes, we find that many
different inking activities add value to the drawing: inking
construction lines (“scaffolding”); inking main lines
(“highlighting”); inking hidden edges (“highlighting the
rear side”); inking axes; hatching; overtracing for
decoration, and annotating.

Editing modes
Erasing is the clearest example of editing task. Erasing is
clearly different from inking. The designer even requires a
different instrument to erase (e.g. the rubber eraser, or the
correction fluid visible in the inner circles of Figure 5).

Figure 5. Sketch of a tape roller corrected with correction

liquid

Changing the instrument is an obvious cue to a change of
mode. Again, the physical action of changing tools does not
interrupt the ideation flow. The designer realizes that the
sketch contains an error and voluntarily starts an action to
correct it. Or, the designer realizes that the sketch is too
messy and contains too many unnecessary lines, and starts
an action to clean it. In both cases, the physical action runs
in parallel with the mental flow, and does not interrupt it.

Cut and paste is another common editing action. Most
design sketches are created during ideation stages. In fact,
one of the main purposes of engineering sketches is to help
the designer to fix the detailed design. Paradoxically, the
sketches become messy and disordered at the same time as

 5

the designer reaches in his mind’s eye a clear and detailed
design. At this point, a clean and tidy sketch would be
helpful to share the detailed design with others. Some
designers use “hard” cut and paste to create a “collage”.
Again, the creation of the patchwork means a change of
mode of interaction between the user and the paper, and

requires different tools (scissors and tape). And, again, this
change of mode does not interrupt the ideation process. On
the contrary, it helps the designer to freely clean and tidy up
the image when he or she likes. Figure 6 shows a
photographic image of one such a patchwork, in which the
cut and paste process remains visible.

Figure 6. Sketch of a vise rearranged with hard cut and
paste (notice the tape)

Figure 7. Sketch of a vise tidied up by a suitable b/w
scanning

Figure 7 shows the tidied appearance of the vise plan after
photocopying it with black and white quality, i.e. after
“filtering” it. Again, the availability of the required tool
(photocopying machine in this case) is the major factor
limiting those editing modes that have been described as
commonplace for designers and architects [5].

Other activities such as copying with symmetry are less
frequent, simply because they are more sophisticated. For
example, obtaining bilateral symmetry involves
photocopying over a transparent sheet and then
photocopying again after pasting the original with the
reversed copy. Hence, the copy-reverse-and-paste is only
done when the drawing is very complex, or the final version
is required. Figures 8 and 9 show an example where an
incomplete sketch was used to obtain a tidied and complete

sketch, by simply copying some features that had been
drawn one time in different locations.

The copies were done though transparent paper
superimposed and conveniently displaced over the original
drawing. Otherwise, the symmetry should have been
indicated through the suitable axis and/or annotation, but
the final shape would have never been drawn.

Again, we conclude that editing activity is commonly
subdivided into erasing, cut and paste and other activities
only limited by the “hardware” availability (rubber eraser,
scissors and tape, photocopying machine, etc.).

Figure 8. Original incomplete sketch of a symmetric part.

Figure 9. Part drawing completed by a “copy and paste”

done though a transparent paper superimposed and
conveniently displaced over the original drawing

STATE OF THE ART IN CAS TOOLS
Sketch-based interfaces aimed at computer-aided
conceptual design were launched in parallel with the early
development of CAD tools addressed at aiding during
detailed design stages. Important early contributions by
Negroponte and Herot can be found back in the 70’s [5, 7,
8]. Nevertheless, the conclusion, according to the same
Herot [9], was that any further advances in sketch
recognition would require both advances in hardware
(which have happened) and advances in artificial
intelligence (which, in general, have not happened). Hence,
it was not until the 90’s, with the advent of appropriate
hardware (e.g. tablet PCs), that the “sketch-based
modeling” concept began to grow through works like those
by Egglí et al. [10] and Turner et al. [11].

Non-invasive sketch-based applications that assist users
during conceptual design stages are called “paper-like” [2]
“magic paper” [12], or “virtual paper and pencil”. We refer
the reader to two recent papers, [13] and [14], which
respectively discuss the states of the art of sketch
understanding and sketch-based modeling.

User studies (e.g. [15]) assert that current computer CAS
tools are still less usable than paper-and pencil sketches and
do not posses significantly improved functionality. We
believe that replicating as many as possible of the actual
operating modes used in a paper and pencil environment,
and switching between them in a natural way, would be
helpful in reducing the gap.

Operating modes
Operating modes distinguish the various configurations
under which the same device works to produce different
effects or perform different tasks.

In considering inking modes, any reasonable sketching tool
will supply a variety of these. The important ergonomic
question is: how invasive is the mechanism for switching
between these modes?

Two distinct paradigms continue to dominate human-to-
computer interaction: command-driven (such as UNIX’s
shell) and menu-driven (such as Window’s Explorer).
Although menu-driven systems are simpler and easier to
learn, they are generally not as flexible as command-driven
systems. Hence, with the advent of handwritten text
recognition and sketch-based input interfaces, the paradigm
has been that of so-called “menu-free” applications where
interaction takes place via hand-sketched commands.

Which is more appropriate to CAS? True command-driven
interfaces such as shell are marketed at advanced users, not
at beginners. However, given the limitations of OCR,
handwritten interaction is greatly restricted as compared
with such interfaces. It is not clear what community would
find such a reduced command-driven interface useful.

In contrast, menu-driven interfaces are marketed at relative
beginners (although, can be seen from the existence of
commercial training courses which train people to use
menu-driven software, they are in reality far from ideal for
true beginners). There is clearly a market niche for very

 7

simple interfaces for true beginners, and sketch-based
interfaces could reasonably fill that niche.

What is missing is an interface paradigm which would suit
experienced design engineers. Identifying such a paradigm
is a difficult task in itself. We can take an initial step in this
direction by analysing what the two current dominant
paradigms have to offer.

The two paradigms have different approaches to switching
between activities. In a menu-driven environment, menus
are usually arranged in groups and sub-groups and visually
presented in sub-menus or toolbars. Selecting a menu
command or toolbar button automatically switches to the
corresponding activity. One advantage of this paradigm is
that two unrelated tasks with similar names should never be
confused, as the user selects them from different
activities/toolbars.

In menu-free applications, the user interacts with the
computer through gestures, graphic symbols that convey
messages. Supposedly, the message conveyed by each
gesture is intuitive and unambiguous. Gestures convey
commands, but do not usually convey activity switching.

It is generally accepted that the only way to avoid, or at
least minimize, explicit user involvement during sketch
interpretation is feeding the system with extra-knowledge.
The easiest available extra knowledge is the drawing
sequence, which has sometimes been assumed to convey
the user’s drawing style [5]. Drawing sequence is widely
used in the low-level recognition of drawn symbols and
spatial relations among them, e.g. [16] and, as an essential
part of Chinese character recognition, has received much
attention in the field of OCR [17]. Feature based gesture
recognition methods coexists with approaches that rely
mainly on sequence information. Kawatani’s work, like
everything else which processes Chinese characters, uses
stroke order. [18] and [19] represent recent work, more
directly related to sketch-based modeling, which also
identifies symbols through sequential information. But, as
was stated long ago [7], more extra knowledge is needed.

Knowledge about both domain and activity are commonly
used to greatly improve the success ratio of current sketch-
based modeling systems. Domains are usually used to
constraint the universe of solutions. Some domains
considered in the literature are: two-and-one-half
dimensional engineering parts [20]; tree diagrams, rooms,
and poly-lines [Gro94]; and GUI’s [21]. Recently, some
approaches have been claimed to be domain-independent
(e.g. LADDER, [18, 22]), and certainly they can be
customized for different domains, using a “domain specific
sketch grammar”. However, developing a customizable
computational approach does not mean that domains do not
exist. On the contrary, they implicitly accept that different
domains exist and their differences affect the SBM flow.

Activities and their consequent operating modes have also
been considered in the SBM literature. For instance, the

SILK approach ([21, 23]) explored electronic sketching
aimed at conceptual design stages. SILK includes both text
and graphics, and uses a “controls window” to change
modes and perform editing operations on the sketch.
However its domain is the design of GUIs [24], and it only
deals with sketches of 2D figures. Plimmer and Apperley
[25] in its pursuit of a “deliberate minimalist environment”
distinguished three modes: drawing, handwriting and
editing. Hammond and Davies [18] discriminate between
“sketching (pen gestures intended to leave a trail of ink) and
editing gestures (pen gestures intended to change existing
ink)”. Comparing these limited lists of modes with the
variety described in Section 2, we can conclude that further
work is required.

The unsolved problem of replacing the switching strategy
implicit in the menu arrangement by a transparent, easy-to-
use one in the context of menu-free systems is perhaps the
key to obtain a fluent interaction. To this end, different
strategies have been suggested. For example, [26] use
gestures to issue commands to their sketching tool.
However, switching between different operating modes
uses a different mechanism, that of changing color. At
present, their work is limited to two colors, but there is no
reason in principle why it could not be extended to more.
Whether (a) color would be culturally acceptable to design
engineers, who are accustomed to working in monochrome,
and (b) how a system would react to “deliberate mistakes”
such as those in Figure 3 where thin lines are used to
represent hidden edges and axes, remain open questions.

One particularly interesting example is the “lasso and tap”
approach of LaViola and Zeleznik [27, 28], which lets users
associate handwritten mathematics with free-form
drawings. The lasso plus erase and lasso plus copy and
paste have proved to be extremely useful in shortening the
drawing process in a system aimed at pre-processing
structural information [29].

Additional features in virtual paper and pencil
Obviously, there are things which can be done on a
computer which cannot be done using pencil and paper. We
have already mentioned filing and interaction with other
applications.

For example, many CAD applications support the useful
tasks of extruding and sweeping 2D profiles to produce 3D
objects. This would clearly be useful, for example when
processing the counterbored holes in Figure 9 to create a
solid model.

When discussing Figure 8, we noted that enforcement of
symmetry was rarely done in a pencil and paper
environment, not because design engineers do not want to
do it (they do) but because the tools available in that
environment do not readily support it. Creation of bilateral
symmetry is straightforward in CAS (after drawing half an
object, the user marks a mirror plane, and the system
creates the rest of the object by reflection through the

mirror plane), and this is one area where CAS is clearly
superior to pencil and paper.

Despite these additional features offered by computer
environments, it remains the case that they will not
supersede pencil and paper until they are competitive with
its core actions, those described in Section 2.

POSSIBLE ADVANCES
The final goal is designing a computer-based (i.e. “virtual”)
paper-and-pencil environment that equals or surpasses
actual paper and pencil, in order to get most designers to
abandon actual in favor of virtual paper and pencil for
conceptual design purposes.

To this end, the strengths of actual paper and pencil should
be replicated in the virtual scenario. Specific strengths of
actual paper and pencil not yet fully replicated in the virtual
paper may require hardware improvements. For example,
tablets have been reported to be less comfortable to use than
pencil and paper because of the small gap (both in time and
distance) between the cursors and the pencil tip [15].

Additionally, corresponding improvements in the software
are also required: use and maintenance of computers still
requires technical knowledge that some designers, quite
rightly, do not see as part of their job. When starting a new
virtual drawing becomes as simple as taking a new physical
piece of paper from a pad, designers may be persuaded to
look on computers as a tool rather than an obstruction.

Apart from trying to give users more freedom in inputting
and editing in a virtual paper and pencil scenario, two other
advances seem relevant and accessible: replicating as many
modes as possible from actual paper and pencil, and finding
the best mode-switching strategies.

Advances in replicating modes
We still require a full taxonomy of operating modes,
including their mutual relationships and descriptions of
cues used to discriminate between them. The list in Section
2 is illustrative of the nature of the problem, but far from
exhaustive.

Designers usually distinguish main from auxiliary lines
through thickness: thick lines are main lines, and thin lines
are auxiliary ones. Automatic interpretation of such
sketches (like Figure 2) should require some sort of strategy
to distinguish auxiliary lines from main lines, similar to the
ones employed for SBM overdrawing approaches [30].

Some researchers have suggested that sequence may help in
discovering the most important lines, e.g. “presuming that
the most recent lines are the most intended” [5]. However,
humans routinely interpret drawings without knowing the
drawing sequence.

Other researchers have developed virtual drawing
environments sensitive to pressure. This has proved useful,
but some problems remain unsolved: 1) some devices are
insensitive to pressure; 2) some designers do not use

pressure to distinguish between thin and thick lines
(preferring, for example, different types of pencil); 3)
overtracing is still difficult to distinguish from highlighting.
Note that interpreting overtracing in freehand sketches (as
per [31]) is a solved problem only for sketches that contain
no auxiliary lines.

Distinguishing the various possible implications of
auxiliary lines will be more difficult. Some of this can be
rule-based, incorporating the various engineering standards.
But, as shown in Figure 3, such standards are not always
followed—there are unofficial conventions as to which
rules can be broken, and when. Engineering culture is an
equally important factor, and one which has barely been
investigated. The third important factor, the human vision
process, has been the subject of many investigations, but
few conclusions have been reached.

Other interactions modes require combined efforts.
Interpreting drawing labels from line drawings is more
difficult than interpreting plain text, for several reasons.
Firstly, labels use a particular syntax that prevents syntactic
parsers from making the right choice when different
plausible interpretations appear. Developing OCR parsers
tailored to cope with such “telegraphic” messages written in
engineering jargon would improve the success ratio of the
recognition of engineering drawing labels. Secondly, labels
of engineering drawings contain interspersed symbols—
they are closer to mathematical notation than to plain text.
OCR tailored for mathematical formulations should
perform better than general purpose OCR. The “shape
descriptions” approach of [32] looks suitable.

In conclusion, to obtain improved virtual paper-and-pencil
scenarios, operating modes are required. The ideal is to find
the optimum number of modes: a set which includes all
those modes which designers require, and excludes all those
which designers do not require. But optimization is
different from the current paradigm of making them
disappear: less is better, but nothing is worst!

Advances in switching modes
If each gesture replaces one menu-like command, gesture
management becomes increasingly complex as the total
amount of commands grows. The number of different labels
in a menu-driven application has few practical limitations.
The number of different icons in toolbars has more practical
limitations: one cannot fill the entire screen with toolbars,
as most of the area must remain available for drawing.
Gestures, by contrast, are limited by our ability to recognize
them and to distinguish between them. Misinterpretations
and misunderstandings due to similarities between different
icons or due to cultural differences between different users
have been reported [33, 34].

Limiting the number of gestures that may be easily
remembered and clearly distinguished from each other
drastically reduces the total set of available commands.

 9

Worse still, in some cases, only the context makes the
difference between distinct useful gestures, or parts of a
depicted figure. For example, differences between “zero”,
“circle” or “lasso” do not depend on the shape itself, but on
the context, including the scale (both absolute and relative
to other nearby ink), the orientation (both absolute and
relative to other nearby ink), and the interpretation(s) of
other nearby ink.

Two questions must be posed. Firstly, how many functions
can be provided without buttons and menus? Secondly, how
many functions does a design engineer require? If the
second answer is larger than the first, we need a new
paradigm.

To sum up: recent approaches have recognized the need for
friendly ways of changing modes in sketch-based
environments, but none of them has proved to address the
full control mode problem while being clearly better than
the others. More importantly, none of them as yet beats
actual pencil and paper.

CONCLUSIONS
It is obvious that computers will remain less cheap, portable
and simple than pencil and paper. The undeniable
advantages of computers (CAS tools make work easier to
edit, easier to file, and easier to interface to other
applications) do not as yet compensate for their inherent
disadvantages.

According to the dominant paradigm, paper-like interfaces
are seen as the best way to get user-friendly computer
applications which help engineers and designers during
conceptual design stages. Modeless applications are
assumed to be the goal.

We argue here that full modeless applications are not the
final goal. If we wish to replicate real paper-and-pencil
scenarios in virtual environments, we must be aware that
actual paper-and-pencil scenarios include a rich variety of
different modes.

To support our assertion that multiple modes are used for
sketching engineering parts and assemblies with actual
pencil and paper, we have described some typical actions
commonly done by designers while sketching.

In reviewing the current state of the art of virtual paper and
pencil, we conclude that replicating paper-and-pencil
scenarios in virtual environments is still unfeasible.
Although the goals of CAS have supposedly already been
accomplished, practical implementations have resulted in
unfriendly interfaces.

The way forward is (a) to replicate as many modes as
possible from actual paper and pencil, and (b) to find a non-
intrusive switching strategy. Determining the real
requirements through further field studies with actual
designers seems a necessary first step in this direction.

ACKNOWLEDGMENTS
The Spanish Ministry of Science and Education and the
European Union (Project DPI2007-66755) partially
supported this work: DPI2007-66755-C02-01
(CUESKETCH: multi-agents based recognition of ideation
sketches) and DPI2007-66755-C02-02 (PRESKETCH:
Computer-aided prescriptive sketches system for
engineering design). The support of the Ramon y Cajal
Scholarship Programme is also acknowledged with
gratitude.

REFERENCES
1. Lim S., Qin S.F., Prieto D., Shackleton J. A study of

sketching behaviour to support free-form surface
modeling from on-line sketching. Design Studies 25,
(2004), 393–413.

2. Gross M.D. and Do E.Y.L. Ambiguous Intentions: A
paper-like interface for creative design. Proc. of 9th
Annual Symposium for User Interface Software and
Technology (UIST), 1996, pp 183-192.

3. Hoffmann D. Visual Intelligence. How we create what
we see. Norton Publishing. 1998

4. Do, E. and Gross M.D. Drawing as a Means to Design
Reasoning. In Visual Representation, Reasoning and
Interaction in Design Workshop notes, Artificial
Intelligence in Design '96 (AID '96), 1996, 22-27.

5. Negroponte N Sketching: A Computational Paradigm
for Personalized Searching. JAE, Vol. 29, No. 2,
Describing Places (1975), pp. 26-29.
http://www.jstor.org/stable/1424480

6. Bertoline G.R., Wiebe E.N., Miller C.L. and Nasman
L.O. Technical graphics communication. Irwin, 1995.

7. Herot C.F. Graphical input through machine recognition
of sketches. Proceedings of the 3rd annual conference
on Computer Graphics and Interactive Techniques.
SIGGRAPH '76. ACM Press. (1976) pp. 97-102.
http://doi.acm.org/10.1145/563274.563294. ACM
SIGGRAPH Computer Graphics, Volume 10 Issue 2.

8. Herot C.F. Sketch recognition for computer-aided
design. UODIGS '76. Proceedings of the
ACM/SIGGRAPH workshop on User-oriented design of
interactive graphics systems. (1976) pp. 31-35.

9. Herot C. Christopher Herot’s Weblog. Some insights
into communication and social media. Sketch
Recognition. (2008)
http://herot.typepad.com/cherot/2008/09/sketch-
recognition.html

10.Eggli, L., Bruderlin, B.D. and Elber G. (1995).
Sketching as a solid modeling tool. Symposium on Solid
Modeling and Applications - Proceedings, pp. 313-321

11.Turner A., Chapman D. and Penn, A. Sketching space.
Computers and Graphics 24 (6), (2000), pp. 869-879

12.Davis, R. Magic Paper: Sketch-Understanding Research.
Computer. Vol. 40, Issue 9, (2007) pages: 34-41.

13.Hong J., Landay J., Long A.C., Mankoff J., “Sketch
recognizers from the end-user’s, the designer’s, and the
programmer’s perspective”, Sketch Understanding,
AAAI Spring Symposium. 2002. pp. 73–77.

14.Company P., Piquer A., Contero M. and Naya F. A
Survey on Geometrical Reconstruction as a Core
Technology to Sketch-Based Modeling. Computers &
Graphics. Vol. 29, No 6. 2005. pp. 892-904.

15.Company P., Contero M., Naya F. and Aleixos N. A
Study of Usability of Sketching Tools Aimed at
Supporting Prescriptive Sketches. Eurographics
Symposium Proceedings. Sketch-Based Interfaces and
Modeling (SBIM06). 2006. pp. 139-146.

16.Gross, M. Recognizing and Interpreting Diagrams in
Design. In T. Catarci. M. Costabile, S. Levialdi, G.
Santucci eds., Advanced Visual Interfaces '94, ACM
Press. 1994.

17.Kawatani, T. Handwritten Kanji Recognition Using
Combined Complementary Classifiers in a Cascade
Arrangement, in Proceedings of the 51h ICDAR,
Bangalore, (1999) 503–506.

18.Hammond, T., and Davis, R. 2003. Ladder: A language
to describe drawing, display, and editing in sketch
recognition. Proc. of the 2003 Int. Joint Conference on
Artificial Intelligence (IJCAI). (2003)

19.Sezgin, T.M., Davis, R. Sketch recognition in
interspersed drawings using time-based graphical
models. Computers and Graphics 32 (5), (2008). pp.
500-510.

20.Hosaka M. and Kimura F., “Using Handwriting Action
to Construct Models of Engineering Objects”,
Computer. Volume: 15, Issue: 11. 1982. pp. 35- 47.

21.Landay, J.A., Myers, B.A., “Interactive Sketching for
Early Stages of User Interface Design”, Proc. of CHI'95,
1995, pp. 43-50.

22.Hammond T., Davis R.: Automatically transforming
symbolic shape descriptions for use in sketch
recognition. In AAAI-2004 (2004).

23.Landay J.A., “SILK: Sketching Interfaces Like Krazy”,
Proc. of Human Factors in Computing Systems (Conf.
Companion), ACM CHI '96, 1996. pp. 398-399.

24.Landay, J.A. and Myers B.A., “Sketching Interfaces:
Toward More Human Interface Design”, IEEE
Computer, 2001. 34(3): p. 56-64.

25.Plimmer, B. and Apperley, M. Computer-Aided
Sketching to Capture Preliminary Design. In Proc. Third
Australasian User Interface Conference (AUIC2002).
CRPIT, 7. Grundy, J. and Calder, P., Eds. ACS. (2002)
9-12.

26.Bartolo A., Farrugia P., Camilleri K. and Borg, J. A
Profile-Driven Sketching Interface for Pen-and-Paper
Sketches, in VL/HCC Workshop: Sketch Tools for
Diagramming, 2008.

27.LaViola J, Zeleznik R., “MathPad2: a system for the
creation and exploration of mathematical sketches”,
ACM Trans Graphics. (Proc. SIGGRAPH 2004);
23(3):432–40.

28.LaViola Jr. J.J., “An initial evaluation of MathPad2: A
tool for creating dynamic mathematical illustrations”,
Computers & Graphics. Vol 31. No. 4. (2007), pp. 540-
553.

29.Company P., Aleixos N., Naya F., Varley P.A.C.,
Contero M. and Fernandez-Pacheco D.G. A New
Sketch-Based Computer Aided Engineering Pre-
Processor. Proc. Sixth Int. Conf. on Engineering
Computational Technology. 2008. Paper-149.

30.Naya F., Conesa J., Contero M., Company P. and Jorge
J. Smart Sketch System for 3D Reconstruction Based
Modeling. Smart Graphics, Proceedings. LNCS.
Volume 2733. 2003, pp 58-68.

31.Ku D.C., Qin S.F. and Wright D.K. Interpretation of
Overtracing Freehand Sketching for Geometric Shapes.
WSCG’2006, 2006.

32.Hammond T, Davis R. Interactive learning of structural
shape descriptions from automatically generated near-
miss examples. In: Intelligent user interfaces (IUI);
2006.

33.Tzeng O.C.S., Trung N.T. and Rieber R.W. Cross-
Cultural Comparisons on Psychosemantics of Icons and
Graphics. Int. J. of Psychology, Volume 25 Issue 1
1990. 77-79.

34.Piamonte P.T., Abeyseker J.D.A. and Ohlssonb K.
Understanding small graphical symbols: a cross-cultural
study. Int. J. of Industrial Ergonomics. 27 (6), 2001,
Pages 399-404.

