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Abstract—We seek to detect the vanishing points implied by 
design sketches of engineering products. Adapting previous ap-
proaches, developed in computer vision for analysis of vectorised 
photographic images, is unsatisfactory, as they do not allow for 
the inherent imperfection of sketches. Human perception seems 
not to be disturbed by such imperfections. Hence, we have de-
signed and implemented a vanishing point detection algorithm 
which mimics the human perception process and tested it with 
perspective line drawings derived from engineering sketches of 
polyhedral objects. The algorithm returns the approximate loca-
tions of the main vanishing points and identifies those groups of 
lines in 2D which correspond to groups of parallel edges in the 
3D object. 
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I.  INTRODUCTION 
Our area of interest is creating computer-based tools to help 

design engineers during conceptual design (the first stage of the 
design process). For sketch-based modelling (SBM) systems to 
become a valid alternative to both current WIMP-based CAD 
systems and traditional paper and pencil sketching, they must 
cope with the full range of conceptual design sketches. Alt-
hough most such sketches are done in orthographic projection 
style [1], it is also important to allow for perspective projec-
tion. 

As explained in section II, some of the most popular van-
ishing point detection algorithms are compatible with human 
interpretation and may be tuned to mimic human perception [1-
3], but none of them copes satisfactorily with the inherent im-
perfection of sketches. Hence, we have designed and imple-
mented a new algorithm, specifically aimed at finding vanish-
ing points (VPs) in sketches of engineering design products. 

Section III describes our algorithm. 

Section IV presents our test results. Section V presents con-
clusions and recommendations for future work. 

II. RELATED WORK 
The input to our algorithm will be a set of lines. In discuss-

ing related work, we only consider approaches which takes 
lines as input (we exclude those such as Barnard [6] and Magee 
and Aggarwal [7] which require bitmaps). We also exclude 

those such as Varley [8] which use (or attempt to deduce) 
higher semantic level information. 

We note that most methods for detecting VPs are intended 
for 2D camera images. The errors they deal with (lens imper-
fections and noise in line segment extraction) are much smaller 
than typical sketching errors. Of these methods, the clustering 
approach of McLean and Kotturi [MK95] is most tolerant to 
noisy data. 

Tardif [4] is interesting as it deals with one of the problems 
we consider here: its input is a set of N sparse edges, and its 
output is a set of VPs and a classification for each edge (as-
signed to a VP or marked as an outlier). It also includes a clus-
tering strategy which improves on McLean and Kotturi [2]. 
However, it uses the J-Linkage algorithm, which is a (a) com-
putationally expensive and (b) non-deterministic, so only pro-
duces “probable” rather than “definite” results. 

Rother [3] is a recent and representative example of a group 
of approaches which explore all candidate VPs, a reasonable 
choice when the aim is to detect VPs in a line drawing with a 
small number of strokes. This has the major drawback that its 
accumulation step only works well for geometrically perfect 
inputs—errors in geometry would result in a set of neighbour-
ing cells each being visited only once, resulting in a set of non-
dominant cells instead of the single dominant cell which the 
algorithm requires to predict the location of the dominant VP. 
A further problem is that it only works well for the “Manhattan 
world” of normalons, and cannot reliably find oblique VPs. 

A recent study by Plumed et al. [5] gives criteria and met-
rics for implementing algorithms which mimic human percep-
tion in detecting vanishing points in design sketches. Although 
these have proved useful during the design and implementation 
of our algorithm, we must highlight a substantial difference 
between [5] and the approach we propose here. Since the inter-
viewed people were aware of the nature of the depicted object, 
they first perceived the object (as a "step", a "house", …), then 
spontaneously grouped edges which they know to be parallel in 
3D, and finally checked whether the corresponding 2D lines 
were parallel or converged to a VP. However, our algorithm 
begins with a set of unclassified 2D lines—there is no high 
semantic level information about the object—and determining 
groups of parallel edges is one intended output of the algo-
rithm. 



III. ALGORITHM 
The input for Sketch-Based Modelling approaches is a 

sketch and the output is a 3D model. We assume that the sketch 
depicts a single object. This paper deals with one intermediate 
stage of the process, in which a line drawing is parsed to get 
higher semantic-level information. The input for this stage is a 
list of lines (where a line is defined by two endpoints, each of 
which is an (x-y) coordinate pair). The output is a set of groups 
of lines in 2D which correspond to groups of parallel edges in 
the 3D object; each group has either one vanishing point (per-
spective projection) or none (parallel projection). 

We have followed the idea used by Rother [3] of exploring 
all candidate VPs, and the idea of clustering present in McLean 
and Kotturi [2] and Tardif [4]. Two key ideas make this algo-
rithm different from previous approaches. (1) We cluster can-
didate vanishing points instead of clustering lines. This pre-
vents the need for repeatedly measuring complex distances (as 
in the voting distance in [3] or the vanishing point estimator in 
[4]), and allows clustering in a way more tolerant of imperfec-
tions in the sketched lines. (2) We use a polar coordinate sys-
tem whose origin is the image centroid, and measure cluster 
similarity as difference in the orientation (angle), regardless of 
the distance (radius)—sketching imperfections produce far 
more uncertainty in distances than in orientation [5]. Thus we 
deal in a natural way with discrepancies in the VP position 
estimated for a group of strokes. 

There are four stages to the algorithm: (1) enumerating all 
possible candidate vanishing points; (2) forming clusters of 
vanishing points; (3) filtering intersecting edges; (4) filtering 
repeated edges. 

A. Enumerating Candidate Vanishing Points 
A candidate VP is created wherever the extensions of two 

lines cross. The data stored for each VP are the two lines and 
the position, calculated in polar coordinates RVP and θVP rela-
tive to the drawing centroid. RVP is scaled to the size of the 
drawing (RVP=1 is the largest distance between the centroid 
and any line endpoint). 

According to [5], humans generally only perceive candidate 
VPs where RVP is between 1.5 and 5. Thus, for the purpose of 
detecting VPs, only candidate VPs within this ring should be 
output from this stage and should be passed on to the clustering 
process. 

However, we also wish to identify non-convergent groups 
of lines. In practice, groups of (nearly) parallel lines also pro-
duce clusters of candidate VPs, but the clouds of such clusters 
are longer and their centroids are typically more distant than 
those of convergent lines. In order to include these, we do not 
use an outer radius limit. 

B. Clustering 
A cluster of VPs is a list of one or more VPs, together with 

a mean orientation angle θC. 

Initially, each VP is its own cluster; larger clusters are 
grown by merger of two smaller clusters. Iteratively, we iden-
tify the closest pair of nearest-neighbour clusters and merge 
them, until the smallest difference between any pair of 

neighbouring θC is greater than a threshold. We set this thresh-
old to 12°, as suggested in [5]. 
Fig. 1. Drawing, candidate VPs and clustering 

 

C. Filtering intersecting lines 
Since lines are stored for each VP, a cluster is not only a list 

of VPs but also a list of lines. All of these lines are presumed to 
correspond to parallel edges of the 3D object. Clearly, any pair 
of lines which cross within the object cannot be parallel in 3D 
and thus should not appear in the same cluster. We use a filter-
ing process to remove lines (and VPs) from clusters when this 
rule is breached. 

Figure 2 shows an example where this filter is required: the 
intersection points of line 11 with lines 4 and 12 are internal, 
but the intersections of 11 with 5, 6 and 9 meet the criteria for 
valid candidate VPs and have been clustered with the intersec-
tions of 4, 5, 6, 9 and 12. Line 11 must be removed from this 
cluster. 
Fig. 2. Vanishing points from intersecting lines 

 
 

Detecting intersecting lines is straightforward (we have al-
ready done this while enumerating candidate VPs). 

Deciding which line to exclude is more complicated. Where 
a conflict exists: 1) the line contributing to more VPs in the 
cluster is retained; 2) where the conflicting lines contribute to 
the same number of VPs, the line with VPs closer to the cen-
troid is retained. 



D. Filtering repeated lines 
Most lines produce more than one candidate VP, and clus-

tering VPs often results in some lines appearing simultaneously 
in different clusters. See, for example, Fig 3. 
Fig. 3. Clustering output, with lines in more than one cluster 

 

 
Since each cluster corresponds to a group of 3D-parallel 

edges, each line may belong to no more than one group. We 
add a second filter to remove repeated lines. 

We order clusters in descending order of (number of VPs + 
number of lines), following the heuristic that the most populous 
clusters are the best perceived ones [5]. For each cluster after 
the first, we remove any lines which also appear in any more 
populous cluster. Where this results in a cluster with fewer than 
two lines, the cluster itself is deleted. Thus, in the example in 
Fig. 8, only the first three clusters would remain. 

IV. ANALYSIS 
We have tested our approach using the 18 examples in [5] 

(figure 4). It can be seen that some of these are natural line 
drawings, while others are wireframes—the algorithm should 
(and does) work equally well for both. 
Fig. 4. Test examples 
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To this, we have added tested two variants of an angle 
bracket, with respectively zero and three perceptual VPs (19 
and 20 in Figure 5), and five more complex drawings (21 to 25 
in Figure 5). 
Fig. 5. Additional test drawings 
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For most test drawings, the results are the same as human 
perception. The detailed results are available in the annex. 



For drawing 6, very poor quality sketching prevents vec-
torisation from creating a valid line drawing, and as a result our 
algorithm fails to group one edge correctly (Figure 6). The 
same problem also occurs with drawing 13. In both cases, a 
slightly better sketch results in the correct grouping. We note 
that humans can group correctly even these poor quality 
sketches, but this is because they use high semantic level in-
formation (candidate edges are collinear with other edges in the 
group, or are opposite other edges in the group in the same 
quadrilateral face) which is not available to the algorithm—the 
algorithm is designed to be independent of other perceptual 
cues (such as collinearity or faces) as it may precede detection 
of such cues. 
Fig. 6. Poor quality sketching results in incomplete grouping 

 
 

Poor sketch quality is even more critical for nearly-parallel 
lines, such as the vertical set of lines in examples 7, 8, 9 and 
16, which humans perceive as non-convergent. Because of 
sketching errors, the orientations of such lines are all close to, 
but not exactly, the intended angle alpha, producing some can-
didate VPs located around alpha and others located around 
alpha+180°. This "complementary convergence" can be seen in 
even in Figure 1, but for clearly convergent lines it does not 
affect the results as the superfluous clusters will be removed by 
the second filtering stage. 

Apart from very poor quality sketches and complementary 
convergence, the algorithm always detects the correct three 
groups of lines for normalon (“Manhattan-like”) shapes where 
all edges and face normals are aligned with one of three main 
perpendicular axes. The algorithm succeeds irrespective of the 
number of actual vanishing points—it also succeeds when lines 
represent edges intended to be parallel. For example, the differ-
ent representations of the angle bracket have been perceived by 
humans as having one (examples 1, 9, 16), two (4 and 8), three 
(20) and zero (19) VPs. 

At first sight, these results appear similar to those reported 
for other approaches for grouping parallel lines currently used 
in SBM. However, such approaches fail when the 2D lines 
corresponding to parallel edges span angles as big as 28°, as in 
Figure 7. Our new algorithm processes this and similar draw-
ings correctly. 

Sensitivity analysis shows that our algorithm is, in general, 
robust, but there are three exceptions: examples 15, 23 and 24. 
In these examples, combinations of sketching errors, large 
convergence angles, and complementary convergence from 

nearly-parallel lines, produce results which are very sensitive to 
tuning parameters such as the inner radius. 

Counting loops shows that the algorithm is O(n^4) in the-
ory. Its practical time complexity has not been determined: 
even with example 25, a figure at the limit of anything anyone 
is ever likely to sketch, the algorithm takes less than 50 ms. We 
can conclude that timing is never going to be a problem. 
Fig. 7. Grouping parallel edges represented by converging lines 

 

V. CONCLUSIONS 
We have presented a new approach for finding vanishing 

points, tailored to sketches of polyhedral objects. Our approach 
improves on previous approaches in two ways: (1) it allows for 
inherent sketching errors, which defeat approaches designed 
for nearly-perfect line segments extracted from cameras images 
from cameras; (2) it derives from a study of human perception 
rather than arbitrary geometric criteria. 

Our preliminary tests show that the algorithm is reasonably 
successful in matching human interpretation (where humans do 
better, it is by making use of high semantic level information). 
More work is still required to automatically detect complemen-
tary convergence and perfectly-parallel lines. 
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ANNEX 
Groups of parallel edges detected by the algorithm for the 18 examples in reference [1], plus the 7 examples added to further test 
it, are marked in red thick lines: 
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Two oblique lines 
missing (central 

ramp) 

   

24 

   
 

Three wrong lines 
 

Three lines missing 

 

25 

    

  

 


	I.  Introduction
	II. Related work
	D. Filtering repeated lines

	IV. Analysis
	V. Conclusions
	Acknowledgment
	References
	Annex


