
A new algorithm to group lines converging to
vanishing points in perspective sketches of polyhedra

Pedro Company, Peter A.C. Varley
Institute of New Imaging Technology

Universitat Jaume I
Castellón de la Plana, Spain

e-mail: (pcompany, varley)@uji.es

Raquel Plumed
Dept. of Mechanical Engineering and Construction

Universitat Jaume I
Castellón de la Plana, Spain

e-mail: plumed@emc.uji.es

Abstract—We seek to detect the vanishing points implied by
design sketches of engineering products. Adapting previous ap-
proaches, developed in computer vision for analysis of vectorised
photographic images, is unsatisfactory, as they do not allow for
the inherent imperfection of sketches. Human perception seems
not to be disturbed by such imperfections. Hence, we have de-
signed and implemented a vanishing point detection algorithm
which mimics the human perception process and tested it with
perspective line drawings derived from engineering sketches of
polyhedral objects. The algorithm returns the approximate loca-
tions of the main vanishing points and identifies those groups of
lines in 2D which correspond to groups of parallel edges in the
3D object.

Keywords— Sketches; Perspective; Vanishing points

I. INTRODUCTION
Our area of interest is creating computer-based tools to help

design engineers during conceptual design (the first stage of the
design process). For sketch-based modelling (SBM) systems to
become a valid alternative to both current WIMP-based CAD
systems and traditional paper and pencil sketching, they must
cope with the full range of conceptual design sketches. Alt-
hough most such sketches are done in orthographic projection
style [1], it is also important to allow for perspective projec-
tion.

As explained in section II, some of the most popular van-
ishing point detection algorithms are compatible with human
interpretation and may be tuned to mimic human perception [1-
3], but none of them copes satisfactorily with the inherent im-
perfection of sketches. Hence, we have designed and imple-
mented a new algorithm, specifically aimed at finding vanish-
ing points (VPs) in sketches of engineering design products.

Section III describes our algorithm.

Section IV presents our test results. Section V presents con-
clusions and recommendations for future work.

II. RELATED WORK
The input to our algorithm will be a set of lines. In discuss-

ing related work, we only consider approaches which takes
lines as input (we exclude those such as Barnard [6] and Magee
and Aggarwal [7] which require bitmaps). We also exclude

those such as Varley [8] which use (or attempt to deduce)
higher semantic level information.

We note that most methods for detecting VPs are intended
for 2D camera images. The errors they deal with (lens imper-
fections and noise in line segment extraction) are much smaller
than typical sketching errors. Of these methods, the clustering
approach of McLean and Kotturi [MK95] is most tolerant to
noisy data.

Tardif [4] is interesting as it deals with one of the problems
we consider here: its input is a set of N sparse edges, and its
output is a set of VPs and a classification for each edge (as-
signed to a VP or marked as an outlier). It also includes a clus-
tering strategy which improves on McLean and Kotturi [2].
However, it uses the J-Linkage algorithm, which is a (a) com-
putationally expensive and (b) non-deterministic, so only pro-
duces “probable” rather than “definite” results.

Rother [3] is a recent and representative example of a group
of approaches which explore all candidate VPs, a reasonable
choice when the aim is to detect VPs in a line drawing with a
small number of strokes. This has the major drawback that its
accumulation step only works well for geometrically perfect
inputs—errors in geometry would result in a set of neighbour-
ing cells each being visited only once, resulting in a set of non-
dominant cells instead of the single dominant cell which the
algorithm requires to predict the location of the dominant VP.
A further problem is that it only works well for the “Manhattan
world” of normalons, and cannot reliably find oblique VPs.

A recent study by Plumed et al. [5] gives criteria and met-
rics for implementing algorithms which mimic human percep-
tion in detecting vanishing points in design sketches. Although
these have proved useful during the design and implementation
of our algorithm, we must highlight a substantial difference
between [5] and the approach we propose here. Since the inter-
viewed people were aware of the nature of the depicted object,
they first perceived the object (as a "step", a "house", …), then
spontaneously grouped edges which they know to be parallel in
3D, and finally checked whether the corresponding 2D lines
were parallel or converged to a VP. However, our algorithm
begins with a set of unclassified 2D lines—there is no high
semantic level information about the object—and determining
groups of parallel edges is one intended output of the algo-
rithm.

III. ALGORITHM
The input for Sketch-Based Modelling approaches is a

sketch and the output is a 3D model. We assume that the sketch
depicts a single object. This paper deals with one intermediate
stage of the process, in which a line drawing is parsed to get
higher semantic-level information. The input for this stage is a
list of lines (where a line is defined by two endpoints, each of
which is an (x-y) coordinate pair). The output is a set of groups
of lines in 2D which correspond to groups of parallel edges in
the 3D object; each group has either one vanishing point (per-
spective projection) or none (parallel projection).

We have followed the idea used by Rother [3] of exploring
all candidate VPs, and the idea of clustering present in McLean
and Kotturi [2] and Tardif [4]. Two key ideas make this algo-
rithm different from previous approaches. (1) We cluster can-
didate vanishing points instead of clustering lines. This pre-
vents the need for repeatedly measuring complex distances (as
in the voting distance in [3] or the vanishing point estimator in
[4]), and allows clustering in a way more tolerant of imperfec-
tions in the sketched lines. (2) We use a polar coordinate sys-
tem whose origin is the image centroid, and measure cluster
similarity as difference in the orientation (angle), regardless of
the distance (radius)—sketching imperfections produce far
more uncertainty in distances than in orientation [5]. Thus we
deal in a natural way with discrepancies in the VP position
estimated for a group of strokes.

There are four stages to the algorithm: (1) enumerating all
possible candidate vanishing points; (2) forming clusters of
vanishing points; (3) filtering intersecting edges; (4) filtering
repeated edges.

A. Enumerating Candidate Vanishing Points
A candidate VP is created wherever the extensions of two

lines cross. The data stored for each VP are the two lines and
the position, calculated in polar coordinates RVP and θVP rela-
tive to the drawing centroid. RVP is scaled to the size of the
drawing (RVP=1 is the largest distance between the centroid
and any line endpoint).

According to [5], humans generally only perceive candidate
VPs where RVP is between 1.5 and 5. Thus, for the purpose of
detecting VPs, only candidate VPs within this ring should be
output from this stage and should be passed on to the clustering
process.

However, we also wish to identify non-convergent groups
of lines. In practice, groups of (nearly) parallel lines also pro-
duce clusters of candidate VPs, but the clouds of such clusters
are longer and their centroids are typically more distant than
those of convergent lines. In order to include these, we do not
use an outer radius limit.

B. Clustering
A cluster of VPs is a list of one or more VPs, together with

a mean orientation angle θC.

Initially, each VP is its own cluster; larger clusters are
grown by merger of two smaller clusters. Iteratively, we iden-
tify the closest pair of nearest-neighbour clusters and merge
them, until the smallest difference between any pair of

neighbouring θC is greater than a threshold. We set this thresh-
old to 12°, as suggested in [5].
Fig. 1. Drawing, candidate VPs and clustering

C. Filtering intersecting lines
Since lines are stored for each VP, a cluster is not only a list

of VPs but also a list of lines. All of these lines are presumed to
correspond to parallel edges of the 3D object. Clearly, any pair
of lines which cross within the object cannot be parallel in 3D
and thus should not appear in the same cluster. We use a filter-
ing process to remove lines (and VPs) from clusters when this
rule is breached.

Figure 2 shows an example where this filter is required: the
intersection points of line 11 with lines 4 and 12 are internal,
but the intersections of 11 with 5, 6 and 9 meet the criteria for
valid candidate VPs and have been clustered with the intersec-
tions of 4, 5, 6, 9 and 12. Line 11 must be removed from this
cluster.
Fig. 2. Vanishing points from intersecting lines

Detecting intersecting lines is straightforward (we have al-
ready done this while enumerating candidate VPs).

Deciding which line to exclude is more complicated. Where
a conflict exists: 1) the line contributing to more VPs in the
cluster is retained; 2) where the conflicting lines contribute to
the same number of VPs, the line with VPs closer to the cen-
troid is retained.

D. Filtering repeated lines
Most lines produce more than one candidate VP, and clus-

tering VPs often results in some lines appearing simultaneously
in different clusters. See, for example, Fig 3.
Fig. 3. Clustering output, with lines in more than one cluster

Since each cluster corresponds to a group of 3D-parallel

edges, each line may belong to no more than one group. We
add a second filter to remove repeated lines.

We order clusters in descending order of (number of VPs +
number of lines), following the heuristic that the most populous
clusters are the best perceived ones [5]. For each cluster after
the first, we remove any lines which also appear in any more
populous cluster. Where this results in a cluster with fewer than
two lines, the cluster itself is deleted. Thus, in the example in
Fig. 8, only the first three clusters would remain.

IV. ANALYSIS
We have tested our approach using the 18 examples in [5]

(figure 4). It can be seen that some of these are natural line
drawings, while others are wireframes—the algorithm should
(and does) work equally well for both.
Fig. 4. Test examples

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

To this, we have added tested two variants of an angle
bracket, with respectively zero and three perceptual VPs (19
and 20 in Figure 5), and five more complex drawings (21 to 25
in Figure 5).
Fig. 5. Additional test drawings

19 20

21 22

23 24

25

For most test drawings, the results are the same as human
perception. The detailed results are available in the annex.

For drawing 6, very poor quality sketching prevents vec-
torisation from creating a valid line drawing, and as a result our
algorithm fails to group one edge correctly (Figure 6). The
same problem also occurs with drawing 13. In both cases, a
slightly better sketch results in the correct grouping. We note
that humans can group correctly even these poor quality
sketches, but this is because they use high semantic level in-
formation (candidate edges are collinear with other edges in the
group, or are opposite other edges in the group in the same
quadrilateral face) which is not available to the algorithm—the
algorithm is designed to be independent of other perceptual
cues (such as collinearity or faces) as it may precede detection
of such cues.
Fig. 6. Poor quality sketching results in incomplete grouping

Poor sketch quality is even more critical for nearly-parallel
lines, such as the vertical set of lines in examples 7, 8, 9 and
16, which humans perceive as non-convergent. Because of
sketching errors, the orientations of such lines are all close to,
but not exactly, the intended angle alpha, producing some can-
didate VPs located around alpha and others located around
alpha+180°. This "complementary convergence" can be seen in
even in Figure 1, but for clearly convergent lines it does not
affect the results as the superfluous clusters will be removed by
the second filtering stage.

Apart from very poor quality sketches and complementary
convergence, the algorithm always detects the correct three
groups of lines for normalon (“Manhattan-like”) shapes where
all edges and face normals are aligned with one of three main
perpendicular axes. The algorithm succeeds irrespective of the
number of actual vanishing points—it also succeeds when lines
represent edges intended to be parallel. For example, the differ-
ent representations of the angle bracket have been perceived by
humans as having one (examples 1, 9, 16), two (4 and 8), three
(20) and zero (19) VPs.

At first sight, these results appear similar to those reported
for other approaches for grouping parallel lines currently used
in SBM. However, such approaches fail when the 2D lines
corresponding to parallel edges span angles as big as 28°, as in
Figure 7. Our new algorithm processes this and similar draw-
ings correctly.

Sensitivity analysis shows that our algorithm is, in general,
robust, but there are three exceptions: examples 15, 23 and 24.
In these examples, combinations of sketching errors, large
convergence angles, and complementary convergence from

nearly-parallel lines, produce results which are very sensitive to
tuning parameters such as the inner radius.

Counting loops shows that the algorithm is O(n^4) in the-
ory. Its practical time complexity has not been determined:
even with example 25, a figure at the limit of anything anyone
is ever likely to sketch, the algorithm takes less than 50 ms. We
can conclude that timing is never going to be a problem.
Fig. 7. Grouping parallel edges represented by converging lines

V. CONCLUSIONS
We have presented a new approach for finding vanishing

points, tailored to sketches of polyhedral objects. Our approach
improves on previous approaches in two ways: (1) it allows for
inherent sketching errors, which defeat approaches designed
for nearly-perfect line segments extracted from cameras images
from cameras; (2) it derives from a study of human perception
rather than arbitrary geometric criteria.

Our preliminary tests show that the algorithm is reasonably
successful in matching human interpretation (where humans do
better, it is by making use of high semantic level information).
More work is still required to automatically detect complemen-
tary convergence and perfectly-parallel lines.

ACKNOWLEDGMENT
The Spanish Ministry of Science and Education and the

European Union (Project DPI2007-66755-C02-01), and the
Ramon y Cajal Scholarship Programme are acknowledged with
gratitude.

REFERENCES
[1] Plumed R., Company P., Piquer A. and Varley P.A.C. “Do engineers use

convergence to a vanishing point when sketching?” Proc. Int.
Symposium on Distributed Computing and Artificial Intelligence 2010.
(DCAI'10), pp.241-250.

[2] McLean G.F. and Kotturi D. “Vanishing point detection by line
clustering”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(11), 1995, 1090 - 1095.

[3] Rother. C. “A new approach to vanishing point detection in architectural
environments”. Image and Vision Computing, 20(9-10), 2002, 647–655.

[4] Tardif, J.P. “Non-Iterative Approach for Fast and Accurate Vanishing
Point Detection”. 12th International Conference on Computer Vision,
2009 IEEE, pp. 1250-1257.

[5] Plumed, R., Company, P., Varley, P.A.C. “Metrics of human perception
of vanishing points in perspective sketches”. 21st International
Conferences in Central Europe on Computer Graphics, Visualization and
Computer Vision WSCG 2013, submitted. Unpublished.

[6] Barnard S.T "Interpreting perspective images". Artificial Intelligence,
21(4), 1983, 435–462.

[7] M.J. Magee, J.K. Aggarwal "Determining vanishing points from
perspective images", Computer Vision, Graphics and Image Processing
26(2), 1984, 256–267.

[8] Varley P.A.C. Automatic Creation of Boundary-Representation Models
from Single Line Drawings. Ph.D. thesis, Cardiff University, 2003.

ANNEX
Groups of parallel edges detected by the algorithm for the 18 examples in reference [1], plus the 7 examples added to further test
it, are marked in red thick lines:

1

2

3

4

5

6

One line missing

7

One line missing

8

One line missing

9

Two lines missing

10

11

12

13

One line missing

14

15

Two groups mixed

One line missing

Wrong group

16

Two lines missing

17

18

19

20

21

22

23

Four wrong lines

One line missing

One wrong line
Four lines missing

One wrong line

One wrong line

Sub-group of the
first group

Two oblique lines
missing (central

ramp)

24

Three wrong lines

Three lines missing

25

	I. Introduction
	II. Related work
	D. Filtering repeated lines

	IV. Analysis
	V. Conclusions
	Acknowledgment
	References
	Annex

