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Preface

This volume contains the proceedings of the XXIII Spanish Computer Graph-
ics Conference, held in Madrid, on September 17-20, 2013. The goal of this
conference is to bring together the research results from the different Spanish
groups on a wide range of topics, from animation to rendering, procedural
modeling, medicine or augmented reality. In addition to providing a place
to communicate new results, CEIG fosters interactions, and hopes to help
define new productive directions for research and applications. We received
32 total submissions this year. FEach submission was reviewed by at least
three members of the International Program Committee or assigned exter-
nal reviewers. Based on the reviews, we accepted 17 as full papers, 3 as
educational papers, 2 as posters (modality 1) and 7 as posters (modality
2); scientific interest and innovation were the only selection criteria. All the
accepted papers are to be presented orally at the conference, grouped in 6
sessions. Posters will be presented in one of these sessions. Each poster
presentation will be preceded by a FastForward session where the authors
briefly presented their works. The regular papers cover a wide range of
topics. We have placed them in 5 sessions:

e Geometry and Levels of Detail

e Measurement and Visualization

Vision and Imaging

Animating Objects and Characters

Games and Education

CEIG 2013 will also enjoy invited talks by renowned international re-
searchers. This year, we are pleased to announce two highly successful
young researchers in Europe: Prof. Christian Theobalt from Saarland Uni-
versity and the Max Planck Institute, and Prof. Niloy Mitra from University
College London. Incidentally, both are recipients of a 2013 ERC Starting
Grant. Prof. Theobalts research lies at the crossroads of computer graphics
and computer vision, and in his talk he will discuss the capture, reconstruc-
tion, and modification of reality in motion. Prof. Mitra, recipient also of
the 2013 ACM SIGGRAPH Significant New Researcher award, is pushing
the boundaries of geometric analysis of shapes, 3D modeling techniques, and
computational design tools.

New this year to CEIG, the program also includes activities to strengthen
the collaboration between academia and industry in Spain. The program
features two exciting roundtables. First, a selected group of entrepreneurs
will share their experience in the creation of startup companies in the field of
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computer graphics, ranging from videogame studios to technology providers.
They will debate, among other topics, the role played by technological in-
novation in the creation of their startups. Second, representatives from the
major computer graphics companies in Spain will debate about novel ways to
collaborate with academia, including both research and educational aspects.

At the conference, the best papers will be selected and invited to submit
an extended version to the Computer Graphics Forum journal, based on
both the reviews and the presentations. All these papers will be reviewed
again to ensure that they contain a sufficiently large amount of new mate-
rial not covered in the CEIG version. We would like to thank everybody
involved in organizing this conference, the authors of all submissions and
the International Program Committee members and the external reviewers.
This year, a primary reviewer was assigned to each paper. This primary
reviewer was in charge of checking if the reviewers suggestions were consid-
ered for the final paper version. It has been an honor to serve as General
Chair and Program Chairs of CEIG 2013, and we hope we have met the
high standards that the conference demands.

CEIG 2103 General Chair
Miguel A. Otaduy (Universidad Rey Juan Carlos)

CEIG 2013 Program Chairs
M. Carmen Juan (Universidad Politécnica de Valencia, Spain)
Diego Borro (CEIT y Tecnun-Universidad de Navarra, Spain)
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Human-like Recognition of Straight Lines in Sketched Strokes

R. Plumed’, P. Company? and P. Varley?

"Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellén de la Plana, Spain
’Institute of New Imaging Technology, Universitat Jaume I, Castellén de la Plana, Spain

Abstract

In this study we consider approaches for recognising straight lines in skeiches. We argue that the computer must
attempt to match human perception rather than arbitrary geometric criteria. We describe an experimental proce-
dure for comparing human and machine perception of straight lines, in order to determine which predictions from
automatic recognition of straight lines are “good” (match human perception) and which are “‘bad”.

We evaluate and compare two well-known computational approaches: chord length and Hough transform, and
conclude that both correlate moderately well with human perception of straight lines, but neither is good enough to
consider this a solved problem. We propose instead a Normalised Hough Transform (NHT), which reliably pro-
duces acceptable results. We identify tuning parameters which allow this algorithm to replicate the human ability
to accept and reject strokes.

We find that the NHT algorithm can produce reasonably good results with a single tuning parameter, but that by
resolving borderline cases with two tuneable criteria we can improve performance still further: rejecting border-
line cases with large oscillations and undulations helps to reject false positives, and the obliqueness of strokes also
has a slight but measurable influence on its perception as a straight line.

Categories and Subject Descriptors (according to ACM CCS): 1.6 [Computer-Aided Engineering]: Computer-Aided
Design, 1.5.2 [Design Methodology]: Classifier design and evaluation, 1.4.6 [Segmentation]: Edge and feature

detection.

1. Introduction

In this paper, we revisit the problem of straight line
recognition. Traditionally, the first step in analysing a
sketch is vectorisation: the input is a stroke, and the output
is a line. Once lines have been identified (e.g. as straight
lines or circumference arcs) the Sketch-Based Modelling
(SBM) process may continue. We note that with some in-
put devices converting sketched input into discrete strokes
is itself non-trivial; this is discussed elsewhere, e.g. [HT06]
and [BCF*08].

Various approaches have been proposed for stroke clas-
sification. Shpitalni and Lipson [SL97] apply linear least
squares fitting to a conic section equation; the resulting
ellipse or hyperbola is arbitrarily classified as a straight line
if its aspect ratio exceeds 20:1. Qin [Qin05] proposes a
method for classifying pen strokes based on adaptive
thresholds and fuzzy knowledge with respect to curves'
linearity and convexity. Zhang et al [ZSD*06] summarise
older approaches, and propose a seeded segment growing
algorithm for extracting graphical primitives from a stroke.
They try to refine their control parameters by using rela-
tionships between primitives. Their algorithm is reportedly
reliable for detecting straight segments.

However, the main conclusion here is that, to the best of
our knowledge, the thresholds used in the literature were

The Eurographics Association 2013.
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estimated by the authors without taking into account how
well they correlate with human perception.

In this paper, we seek to identify those parameters which
help humans to recognise a stroke as a straight line.

We revisit two proposed solutions: the simplest, which
compares chord lengths [QWJ01], and the most popular,
using the Hough transform [DH72]. Since our ideal of a
reliable algorithm is one which "perceives" exactly as hu-
mans do, we _compare the two approaches with human in-
terpretations of the same input data. Both approaches de-
pend on tuning parameters, and we analyse the influence of
tuning parameters on reliability. In contrast to previous
attempts to tune these algorithms, we attempt to match
human perception rather than a mathematical ideal.

We find that, although both correlate moderately well
with human perception of straight lines, neither is good
enough to consider this a solved problem.

We propose a new algorithm based on a modification to
the Hough transform. Our results demonstrate that even
with a single tuning parameter this fits better with human
perception of straight lines. By applying more sophisticated
criteria to resolve borderline cases, we can improve this
performance still further.

Section 2 presents our test data: the human interpretation
of strokes. Section 3 describes the three algorithms. Section
4 presents our results: how the algorithms interpret the
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same input data, and how the algorithms can be tuned so
that machine interpretations match human interpretations.

2. Human perception

Some of them depict horizontal and vertical lines (with
differing degrees of accuracy), others are clearly slanted
lines. Some of them have high values of curvature; others
have little curvature.

As stated above, the main goal of this paper is to de- Exarmple _— ?;;‘;f; - are <§§§i§
scribe an algorithm which replicates the way humans rec- 1 53 782 7 139 -1.08
ognise scribbled lines as depicting straight lines. One im- - il S 1 057 e
mediate difficulty is that human perception is influenced by - ?z ) 2; 2] gé; ;;;;
different types of stimulus: by the drawing skill of the au- 3 93 504 B 025 3082
thor, and by the observer’s knowledge and capability in 6 257 767 33 0.29 3109
interpreting drawings. 7 . 120 8 . ~39.28

8 120 187 64 0.12 38.06

Another problem we have noted is that different sketch 9 43 60 80 0.07 -0.69
recognition algorithms are typically tuned manually to fit 10 73 183 40 0.23 -51.13
their implementers’ own drawing style and perception. Our 1 387 1801 2L g4 3266

. 12 110 375 29 0.34 -149.54
challenge is to find a more general method, based on what = o 7 ) i i
most humans perceive. 14 ) 260 032 K]
; 5 . < 15 57 163 35 0.18 2231
e % 16 210 286 73 0.09 40.35
] / 17 75 304 19 0.23 ~41.99
- i 18 172 410 42 0.20 -1.92
4 5 . 6
% % 19 121 175 9 0.11 3155
. N 20 194 619 31 0.34 5433
.3 e 21 257 540 48 021 41.66
¢ & o 2 76 170 45 0.20 4838
/ - 23 3 171 13 0.76 “115.46
2% 15 366 [ 226 0.86
n u \\ 1 5 23 244 9 0.74 31.75
e 26 98 137 72 0.10 4827
\ 27 18 203 9 1.00 45.27
i3 i1 [ 15 I 198 262 76 0.10 94.50
/ 29 99 176 56 0.15 32.93
30 38 197 19 0.32 38.06

7

A
e
\

Figure 1: Example strokes (not to scale)

1
3

3
W

Our first step is to study and analyse human stroke
recognition by performing experiments with groups of
humans who are then interviewed to make their perceptions
explicit.

Section 2.1 shows our input data. Sections 2.2, 2.3 and
2.4 describe the experiments performed using such ques-
tionnaires.

2.1 Initial data

This section describes the test data which we presented
both to humans and to computer algorithms. We collated
30 example sketched strokes which include strokes of dif-
ferent nature and length (Figure 1). Each stroke is a list of
sampled points, stored by their Cartesian x,y-coordinates.

58

Table 1: Characteristics of example strokes.

Table 1 shows some characteristics of the examples. The
columuns list:

e  Example number (as shown in Figure 1).
e The number of points (i.e. x,y-coordinate pairs).

e  The bounding length of the stroke (distance between
endpoints).

e  The density of points defining the stroke (calculated
as the ratio of number of points to stroke length)—if
the stroke has significant variations in its path, these
variations can remain hidden by a lack of density.

e  Drawing speed, calculated as the ratio of length of
the stroke to the time taken to draw it. A higher speed
produces a lower density (as shows the negative cor-
relation in Table 3).

e Slope of the line (in degrees) which best fits the data
points (using the linear regression method explained
in Section 3.3).

2.2 First experiment

The purpose of our first experiment is to determine
which strokes are perceived by human beings as straight
lines. We can guess that length, obliqueness, and drawing
irregularities such as undulations, oscillations and high
curvature ratio might influence human perception.

(© The Eurographics Association 2013.
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The examples listed in Figure 1 were distributed in three
questionnaires with ten pictures each (Figure 2). A total of
97 questionnaires were returned.

STRAIGHT LINES INTERPRETATION

oW 1R
ssify them as

oxtiatid Luscs. hiey are 5ot perfect.
3 line. ot straiglyt Hne, o if vou are not sure, tiok the "uncertain® ssewer

s E—

e

Sepes

T s Drwann

[ sy

Figure 2: Questionnaire for the first experiment.

Most of the subjects were undergraduate students of in-
dustrial engineering or engineering design. Some subjects
were academics from different technological areas. We also
included a few subjects with no technical drawing training
and a few subjects with no education beyond secondary
level. Males and females were represented roughly equally.

The subjects were asked to classify the strokes of a ques-
tionnaire as depicting: straight lines (Yes), not straight
lines (No) or uncertain (?). The results are tabulated in
Table 2 as percentage of subjects who perceived them as
straight lines. For each example we also list its length (al-
ready listed in Table 1, but reproduced here to ease com-
parisons), the linearity (obtained from the chord length
algorithm explained in Section 3.1), the obliqueness and
the tolerance.

Yes No ? Stroke Linearity i Tol.
i %) | (%) | (%) | length (%)[) Oblig. | g/
1 97 3 782 99.66 0.024 1.93
2 97 3 311 98.39 0.033 1.96
5 97 3 904 93.06 0.685 2.62
24 94 6 366 99.65 0.019 3.30
14 91 9 260 97.23 0.038 1.59
20 91 9 619 94.89 0.793 2.56
28 91 9 262 94.97 0.100 3.63
13 78 19 3 167 96.79 0.012 3.70
9 76 21 3 597 93.93 0.015 5.36
18 75 25 410 96.92 0.043 3.79
22 47 44 9 170 91.83 0.925 57
23 41 47 1 171 97.58 0.566 6.59
3 39 52 9 214 94.58 0.948 6.44
21 28 72 540 87.60 0.926 6.57
12 25 59 1 375 94.92 0.677 5.07
19 25 69 6 175 86.61 0.701 5.96
29 22 69 9 176 89.15 0.732 8.28
10 18 73 9 183 93.58 0.864 8.88
27 16 75 9 203 97.76 0.994 9.64
25 9 81 9 244 96.79 0.706 10.13
7 9 82 9 120 83.80 0.829 11.00
17 6 84 9 394 95.79 0.933 8.49
15 6 91 3 163 91.07 0.496 10.14
11 3 94 3 180 94.58 0.726 6.46
30 94 6 197 94.49 0.846 10.81
4 97 3 413 92.24 0.805 13.16
6 7 3 767 93.49 0.691 7.42
8 97 3 187 79.45 0.846 14.09
16 100 286 82.06 0.897 8.55
26 100 137 85.23 0.927 16.52

Table 2: Results of the first experiment.

Obliqueness is a parameter which measures how slanted
a stroke is (we cannot correlate slope directly because of its

(© The Eurographics Association 2013.
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non-linear behaviour). We define obligueness as a normal-
ised value in the range 0 (horizontal or vertical) to 1 (slope
of 45 degrees). 1t is calculated from the slope data of the
regression line fitted to the stroke and listed in Table 1 (it
ranges between -180° and 180°) as follows:

if slope € {-180° ...0°}, then slope « 180 + slope;
if slope € {90° .. 180°}, then slope «180-slope;
if slope € {45° .. 90°} then slope«90-slope;
Obliqueness<— slope/45

Tolerance is well known concept in Geometric Dimen-
sion and Tolerancing for measuring the “straightness” of a
line. Given the bounding box of the line, defining x-range
as the length of the side nearly parallel to the line and y-
range as that of the side nearly perpendicular to the line,
the absolute tolerance of straightness is the absolute value
y-range, and the relative tolerance of straightness is the
ratio y-range/x-range. The lower these parameters are, the
straighter the stroke is considered to be. These parameters
do not distinguish whether the lack of straightness results
from oscillations or undulations (higher or lower frequency
respectively).

_~Original Stroke

P Boundary box /{,/x/ ”M; —Rotated Stroke
/ /”’ B _—Rotated regression line
/ A &
/ o il
M £ 3 ¥
el g
= - &
7

Figure 3: Regression line

The tolerance parameter measures the minimum bound-
ing box which contains all the stroke points.

Stroke  Density Tol Tol
length %) Speed Lin(%) Oblig (re) (abs)  Yes
Stroke Pear 1 -320 187 198 018 -274 824 053
length sip. .085 323 295 926 143 .000 _ .782
Densy Pear  -.320 1 ~703° -721 044 221 -237 093
(%) Sig. .085 000 .000 818 240 208  .627
Speed Pear 187  -.703° 1 55 -311 -276 018 313
Sig. 323 .000 001 095 140 923  .092
Linea Pear 198  -721 556 1 -527 -609° -029 .552°
(%) Sia. 1295 ,000 .001 003 000 879 .002
Oblig Pear  .018 044 -311 -527 1 .647 316 -.760
Sig. 926 818 095 003 000 088  .000
Tol Pear -274 221 -276 -.609 647 1 217 -856
(rel)  Sig. 143 240 140 .000 000 25 000
Tol Pear .824  -237 018  -029 316 217 1 -446
(abs) Sig. .000 1208 923 879 088 .25 .013
N Pcar  .052  -.092 314 5527 -760 -.856 -.446 1

s, 785 628 092 .002 .000 _ .000  .013

Table 3: Pearson correlation

Figure 3 shows an original stroke and the computed re-
gression line rotated to a horizontal orientation.

We ‘applied Pearson correlation analysis to those pa-
rameters. Table 3 shows the results.

We find that relative tolerance correlates better with hu-
man perception (YES) than does absolute tolerance. For
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this reason, from now on we use only relative tolerance and
we abbreviate it to tolerance.

Although Table 2 shows that no stroke was always per-
ceived as a straight line, examples 1, 2, 5, 24, 14, 20 and
28 were considered straight lines by more than 90% of
subjects. Hence, we can conclude that low tolerance gener-
ally leads to high levels of perception of straightness.

Examples 13, 9 and 18 depict horizontal strokes with a
medium tolerance due to a slight curvature and medium
values of linearity, but even so, they were classified as
straight lines by around 75% of the subjects. In contrast,
example 12, which shows a relative medium tolerance but
is oblique, was only perceived as straight line by around
25%.

The rest of the examples were considered as straight
lines by less than 50% of the subjects. These strokes were
drawn with different combinations of lengths and toleranc-
es.

Examples 16 and 26 were invariably classified as not
straight lines. These represent short strokes with noticeable
high tolerances and low values of linearity. We can con-
clude that the combination of these factors is enough on its
own to cause a stroke to be interpreted as not a straight
line.

This preliminary analysis confirms that length does not
influence human perception at all.

The analysis suggests that obliqueness does indeed affect
the human perception of straight lines. Proving this re-
quires a specific experiment, which should avoid any pos-
sible corruption in the sample due to the different abilities
of drawer to draw lines with different slope. We discuss the
result of this experiment in the next section.

2.3 Second experiment

e

Family 1 (example 10) Family 2 (example 20)

Family 3 (example 30) Family 4 (example 40)

e T
e~ — T T —

Family 6 (example 60)

Family 5 (example 50)

Figure 4: Strokes which define each family of lines

The goal in this section is to analyse and discuss the in-
fluence of the stroke’s obliqueness on the human percep-
tion of straightness. This general goal is specified in two
hypotheses:

1. Slopes with no obliqueness (horizontal and vertical
lines) are perceived in a similar way.

2. Vertical and horizontal directions are considered spe-
cial directions which invoke in people the perception of
straightness much more than do other values of oblique-
ness.

We created a test set of 72 examples which include 6 dif-
ferent families of stroke. Each family was generated by

rotating an original horizontal stroke. The horizontal
strokes of each family are shown in Figure 4

Each family is characterised by parameters such as num-
ber of points, length, linearity and tolerance. The values of
these parameters for each family are shown in Table 4.

Id family Points | Length | %Linearity | Tol.
Family 1 641 760,79 | 94,51 1,71
Family 2 193 743,60 | 97,63 4,67
Family 3 578 686,10 | 91,54 2,20
Family 4 111 658,28 |97,91 5,67
Family 5 301 799,64 |95,93 3,80
Family 6 433 771,42 93,21 3,35

Table 4: General parameters of each family.

Each original stroke was rotated so that the regression
line which best fits the stroke was oriented at the angles
listed in Table 5 (thus each family contains twelve strokes).
Each example is labelled by the Id angle defined in Table 5
followed by the number of its family.

Idangle| 1 2 3 4 5 6 7 8 9 10 11 12
Angles | 0° | 9° | 27°] 45° 54°] 72°| 90°] 999 117°| 135°144° |162°
Oblig. | 0 | 02] 0.6] 1 08| 04| 0 0.2 06| 1 0.8 | 04

Table 5: Values of the angles used in the experiment

With regard to the questionnaires:

1. Each questionnaire contained twelve different exam-
ples chosen randomly, without any repetition. Each exam-
ple appears in two different questionnaires. At the end, we
created twelve different questionnaires.

2. The answer form contained the instructions for the ex-
periment. It also contained a Likert-type scale to score the
“straightness” of each figure. Each subject scored each
example with a value from 5 (the figure was perceived as a
straight line) down to 1 (the figure was perceived as not a
straight line).

Figure 5 shows an example of questionnaire and an an-
swer form.
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Figure 5: Example of questionnaire and answer form for
the second experiment.

We collected a total of 144 answer forms, and obtained
24 perception data for each type of questionnaire and 48
perception data for each stroke (i.e combination of family
and obliqueness).

Statistically, as we have the same number of data in each
classification, the power of the method is maximised. In
addition, our questionnaire design ensures that observa-

(© The Eurographics Association 2013.
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tions are independent. However, the number of samples
was not enough for the requirements of each population’s
normal distribution and equality of variance to be satisfied.

To verify the first hypothesis, we used an ANOVA
[HAT*98] taking as main factors the family identification
and the slopes, using only the angles 0° and 90°, to obtain a
2x6 classification table. The ANOVA results are shown in
Table 6.

Test of inter-subjects

Dependent variable: Straightness score

Origin Sum of Square type 111 df Mean F Sig.
Corrected model 205.927a 11 18.721 20.141  0.000
Intersection 2194.531 1 2194531 2360.983 0.000
Idfamily 195.323 5 39.065 42.028 0.000
Slope 3337 1 3.337 3.590  0.059
Idfamily * Slope 7.267 5 1.453 1.564  0.170
Error 256.542 276 0.929

Total 2657.000 288

Corrected total 462.469 287

a. R squared = 0.445 (R squared and corrected = 0.423)
Table 6: ANOVA results for first hypothesis

We deduce that whereas the groups defined by the factor
Idgmuy have perception score means considerably different
(Sig = 0.000 < 0.05), the factor Slope does not have a sig-
nificant effect over the perception score mean (Sig = 0.059
>0.05) and neither does the interaction Idgmiy*Slope (Sig =
0.17 > 0.05).

Therefore, the first hypothesis has been confirmed: hori-
zontal and vertical slopes are perceived similarly.

To test the second hypothesis we applied an ANOVA,
taking as main factors the family identification and all six
levels of obliqueness, to obtain a 6x6 classification table.
The results are shown in Table 7.

Test of inter-subjects

Dependent variable: Straightness Score

Origin Sum of Square type Il df  Mean F Sig.
Corrected model 1141.298° 35 32.609 35.320 0.000
Intersection 13139.598 1 13139.598 14232.213 0.000
Idfamily 1055.621 5 211.124  228.680 0.000
Obliq. 47.385 5 9.477 10.265 0.000
Idfamily *Oblig 38.292 25 . 31532 1.659 0.022
Error 1562.104 1692 0.923

Total 15843.000 1728

Corrected total ~ 2703.402 1727

a. R squared = 0.422 (R squared and corrected = 0.410)
Table 7: ANOVA results for second hypothesis

The results suggest that both factors have a significant
effect over the perception of straightness (in both cases Sig
= 0.000 < 0.05). Therefore, the different families of lines
are perceived as having different straightness, and the dif-
ferent members of the same family are also perceived dif-
ferently—both the quality and the direction of the line
influence the perception of straightness.

(© The Eurographics Association 2013.
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In addition, the interaction factor Idg,*Obliqueness
shows a significant level of Sig = 0.022 (lower than 0.05),
which means that even within the same family, the percep-
tion of straightness differs according to the obliqueness.

However, the weight of the Obliqueness variable is no-
where near as strong as that of the Idg,, variable, as the
high F-test value shows in the case of Idgmy, (F = 228.68)
as opposed to the low value for Obliqueness (F = 10.265).

We can accept then that although obliqueness seems to
affect the way people tend to perceive the straightness of a
line, it should be considered as a secondary factor, not as
important as those parameters which characterise the dif-
ferent families. The model with only these two main factors
would only explain 42.2% (value of R squared) of the vari-
ations in the answers.

Straightness Score

Tukey B*®
Subset

IObliqueness N 1 2 3
0.2 288 2.54
0,4 288 2.56

.0 288 2.76
0.6 1288 2.80
0.8 288 2.88 2.88
1.0 288 3.01

The table shows the means of the groups of homogeneous subsets.
a. It uses the simple size of the harmonic mean = 288.000
b. Alpha = 0.05

Table 8: Post hoc analysis, homogeneous groups.

Table 8 shows the results of a Tukey post-hoc analysis
[DV99] which groups the different levels of obliqueness
according to the similarity of their scoring means. As we
can see, strokes with low but non-zero value of obliqueness
have the lowest mean; their scores are nearly 5% lower
than the mean scores of the second subset (which includes
strokes with zero obliqueness); in contrast, the third subset,
which groups the highest levels of obliqueness, has mean
scores around 3% higher than the second subset.

Thus, regarding our second hypothesis, we can conclude
that obliqueness does indeed seem to influence the percep-
tion of straightness, but, contrary to our expectations, peo-
ple seem to be more sensitive to lack of straightness for
lines close to horizontal or vertical. They are less demand-
ing when the line depicts a slope around 45° or 135°.

3. Algorithms

In this section, we describe three algorithms for detecting
straight lines from strokes. Our goal is to demonstrate the
feasibility of defining perceptually-rooted parameters and
their significance thresholds for such algorithms, taking
into account the analysis made for human behaviour de-
scribed in Section 2. In addition we shall compare the reli-
ability of the algorithms.

In each case, our input data is a temporally-ordered list
of sampled points captured in a single sequence: pen-down,
pen-move, and pen-up.
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3.1 Chord length

We study the chord length algorithm, based on the line-
arity parameter used by Qin et al. [QWJO01] to identify
straight lines from an input data polygon. We have chosen
this algorithm because of its ease of implementation and its
very low computational cost

Linearity of a stroke is the ratio of the distance between
the two end points to the sum of the distances between
consecutive points.

The value of linearity lies between 0 and 1. A strict
straight line has a linearity of 1. True straight lines rarely
occur in freehand sketches, so we need to determine a tol-
erance in order to classify an input stroke. Our algorithm
will identify a stroke as a straight line if its linearity is
greater than a threshold. The explanation of how this
threshold is set is in Section 4.

3.2 Hough Transform

The Standard Hough Transform (SHT) is an algorithm
widely used to solve line detection problems in image pro-
cessing and computer vision.

This was introduced by Hough in 1962, but all versions
of the algorithm in use today are based on the Standard
Hough Transform (SHT) of Duda and Hart [DH72]. Here,
we study an adaptation of the SHT for rapid processing of a
single pen input stroke [Lee06].

The algorithm represents a line as a linear equation in
normal form, where the normal for a given line is the short-
est segment between the line and the origin:

p=xcosb+ysin 0 (1)

In this expression, 6 represents the angle of inclination of
the normal and p is the length of the normal. With these
parameters fixed, x and y represent the Cartesian coordi-
nates of each point which belongs to this straight line.

Using the normal form, we can represent each point in
(x,y) space as a sinusoidal curve in (0,p) space. Applying
this procedure to every point, we obtain a set of sinusoidal
curves.

All the sinusoidal curves which intersect at a particular
point in (p, 8) space represent points which belong to the
same straight line. The algorithm proposed by Lee [Lee06]
discretises (p, 6) space into a finite number of cells, using
an accumulator p-6 array where each cell is a counter
which is incremented whenever a sinusoidal curve passes
through it.

In the matrix, 6 takes values between 0° and 180° with
one cell per degree. The range of p is determined by dou-
bling the length of the diagonal which frames the input
stroke, and adding one to get an odd value:

0= st (nses ) 11 )
The known advantage of the SHT algorithm is its ro-
bustness. However, the algorithm also has weaknesses.

First, as we work with freehand strokes, we need some
flexibility to tolerate inaccuracies. Furthermore, the accura-
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cy of the results depends on the stroke length: the longer
the stroke, the higher the value of p, and the better the ac-
curacy. Secondly, stroke inclination affects p, as the varia-
tions of the parameters Xange and Yiange (€quation 2) change
with varying inclination, so the same stroke is evaluated
differently if its inclination changes. Finally, the algorithm
requires more computation than the chord length algo-
rithm, and increasing the precision requires more columns
in the p-8 matrix, further increasing the computational cost.

In order to avoid these problems, we propose a modifica-
tion to the Standard Hough Transform, the Normalised
Hough Transform (NHT), where the difference is how the
matrix parameters are defined. In the NHT, the
discretisations of p and 6 are fixed before running the algo-
rithm, so the algorithm does not depend on the number of
points in the stroke. In addition, the stroke is pre-rotated
until we get its most likely horizontal direction (this pro-
cess is described in Section 3.3). This allows us to deter-
mine a fixed tolerance value, independent of the length, the
slope and number of points in the stroke.

The size of the p-6 matrix remains to be determined (this
will be done in Section 4).

3.3 Stroke Pre-Rotation for NHT algorithm

In order to get the rotated stroke, the original stroke must
be rotated so that it is (more or less) horizontal. But strokes
are not straight lines, so determining the rotation angle is
non-trivial: we must fit a straight line to the stroke data,
and use its orientation as the rotation angle.

For this, we used orthogonal regression (OR), which
minimises the sum of the squared orthogonal distances
from the stroke data points to the fitting line. This is a natu-
ral generalisation of the least-squares approximation when
the data in both variables, x and y, is perturbed. Other
methodology closely related with OR is the Principle
Component Analysis (PCA). Both methods obtain the same
fitting line. We used OR method because our input data
ease its application.

In order to convert our orthogonal regression into a sim-
ple linear regression problem, we adapt Brown’s idea of
seeking the principle directions of the data points [Bro12],
but in our case we rotate the entire set of n points about the
centroid. The rotation angle 6, which rotates the regression
line so that its perpendicular corresponds to the vertical, is
then calculated by minimising the sum of squares of the
vertical heights of the n transformed data points.

4. Comparison between human perception and algo-
rithmic classification

In this section we analyse the influence of rotation and
obliqueness on the ability of algorithms to mimic human
perception.

(© The Eurographics Association 2013.
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4.1 TInfluence of stroke rotation

To measure the influence of stroke rotation in the per-
formance of the algorithms, we chose two strokes (16 and
18) and rotated them to get three different variants (Figure
6). We evaluated the six resulting strokes with four algo-
rithms (Chord Length, SHT, Unrotated NHT, Rotated

Table 11 shows the Pearson correlations coefficients be-
tween the output of the algorithms and the initial input
parameters. Table 12 shows the correlation coefficients
between the results obtained with each algorithm and the

human perception results.

NHT). Table 9 collates the results of how those strokes — Chord length | SHT NHT .
were evaluated by the different algorithms. Yes % Linearity % STIR % | STIR % | Oblig [Tol*COB
T v 1 97 99.66 28.30 88.68 0.024 1.89
, / 2 97 98.39 30.00 58.33 0.033 1.92
¥ 5 97 93.06 10.69 61.83 0.685 2.46
{ / 24 94 99.65 46.67 60.00 0.019 3.23
14 91 97.23 33.75 | 67.50 0.038 | 1.56
/ / 20 91 94.89 1289 | 7113 0.793 | 235
{ / 28 91 94.97 28.79 | 66.16 0.100 | 3.60
| (/ 13 78 96.79 54.46 67.33 0.012 3.62
16 () 16 (b) 16 (c) 9 76 |93.93 5008 |35208 |o0015]| 524
! 18 75 96.92 19.19 | 53.49 0.043 | 3.72
“} 22 47 91.83 27.63 | 38.16 0.925 | 5.21
/ { 23 41 97.58 26.09 47.83 0.566 6.34
N 3 39 94.58 2239|3881 0.948 | 5.80
/ } 21 28 87.6 11.67 49.42 0.926 5.93
7 \‘ 12 25 94.92 17.27 43.63 0.677 4.76
Z 19 25 86.61 2231 39.67 0.701 5.57
29 22 89.15 2424 | 46.46 0.732 | 7.69
L L i) 10 18 [93.58 2740|4658 | 0.864 | 8.06
Figure 6: Strokes presented in different orientations. 27 16 19776 3333 |50.00 |0.994 | 868
25 9 96.79 26.09 | 47.83 0.706 | 9.45
As Table 9 ShOWS, the Chord Length and the Rotated 7 9 83.8 2473 35.48 0.828 10.04
NHT algorithms can be considered robust, because (unlike 17 6 95.79 18.67 | 2632 0.933 9.15
the SHT and Unrotated NHT) they give a consistent value 15 6 91.07 19.30 | 40.00 0.496 | 8.28
independent of the stroke orientation. Hence, we can dis- 11 3 94.58 6.20 51.68 0.726 | 6.00
card Unrotated NHT, and all subsequent references to NHT 30 0 94.49 23.68 | 37.50 0.846 | 11.98
are to Rotated NHT. SHT is also sensitive to rotation, but 4 0 79.45 18.33 | 43.19 0.805 6.80
we shall not yet discard it, as we still wish to identify its 6 0 9224 17.65 2917 | 0.691 | 13.19
other strengths and weaknesses. 8 0 93.49 12.84 32.86 0.846 7.78
- 16 0 85.23 22.45 39.80 0.897 14.94
e | Sl L i |, oy DTN 26 0 82.06 1476 3684 0927 | 975
STIR% | No rotated | Rotated
16.a 89°  195.93 10.30 50.83 50.83 Table 10: Algorithm results against human perception
16.b 64° 95.93 12.29 55.48 50.83
16.c 142° | 95.93 14.62 53.82 50.83
184 2% |9321  |924 |47 50.12 4.2.1 Chord Length
18.b 94° 93.21 9.70 45.73 50.12 % . 2 .
i e ey o7 R T Linearity shows results obtained using the chord length

Table 9: Results of algorithms applied to Figure 6.

4.2 Tuning the algorithms

In order to find accuracy thresholds for the algorithms
described in Section 3, we compare the output of each
algorithm with the results of human perception of experi-
ment 1. Table 10 shows our results. It is subdivided into
three groups:

e  examples considered as straight lines by human per-
ception in more than 90% of cases.

e  examples considered as straight lines in 50% to 90%
of cases.

e examples considered as straight lines in less than
50% of cases.

(© The Eurographics Association 2013.
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algorithm. Qin et al [QWIJO01] used a threshold of 95%, a
value in accordance with the middle group of examples.
With this value, we get one false negative (example 5) and
six false positives (examples 13, 18, 23, 27, 25 and 17).

We note a high negative correlation (-0.721) between the
Linearity and the Density (see Table 11), which suggests
that Density is an influence in false results. Examples 17,
23, 25 and 27 have very low densities, and all depict lines
with high curvature. It appears that piecewise linear ap-
proximation of a scribbled line input is unreliable in these
cases—the chord length algorithm will classify smooth
curved strokes as straight lines even when the curvature is
high enough for humans not to perceive them as straight
lines.

Stroke length has no effect on the results of the chord
length algorithm. So, in this aspect, the algorithm behaves
as humans do.
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Stroke SHT SHT NHT

Jength Density Oblig. Tol.  column .inearit STIR STIR

Stroke  Pear 1 -320 018 -274 999 198 -5147 256
length  Sig. 085 926 143 000 295 004 172
Deisiiy Pear  -320 1 043 221 -347 -7217 062 -212
Sig. 085 820 240 060 000 744 261

Obia, Pear 018 043 1 647" 010 527" -607 -.674
Sig. 926 820 000 959 003 .000  .000

Tol Pear  -274 221 647 1 -295 -609° -240 -714°
i Sig. 143 240 .000 14 000 202 .000
SHT Pear 999  -347 -010 -295 1 236 -490° 280
colum  Sig. 000 060 959 114 209 006 .133
Linearity Pear  .198 -721° -527 -609° 236 1 3700 547
Sig. 295 .000 003 .000 209 044 002

SHT Pear -514" 062 -607 -240 -490° 370" 1 335
STIR Sig. 004 744 000 202 .006  .044 070
NHT Pear 256 -212 -674 -714° 280 547 335 1

STIR  Sig. 172 261 000 000 133 002 .070

*. Correlation is significant at 0.05 level (bilateral).
*¥_Correlation is significant at 0.01 level (bilateral).
Sample size is N=30
Table 11: Pearson correlation between output and input
parameters.

Table 12 shows specifically the correlations between the
different approaches and the results of human perception
(YES). In the case of linearity the correlation is positive
but insufficiently strong.

Linearity SHT  NHT Yes
.. Pearson 1 370%  547%%  552%*
Lincarity .
Sig. .044 .002 .002
Pearson  .370* 1 335 A444*
SHT .
Sig. .044 .070 .014
. Pearson .547** 335 1 827
NHT )
Sig. .002 .070 .000
Pearson .552%%  444*  R27** 1
Yes
Sig. .002 .014 .000

*. Correlation is significant at 0.05 level (bilateral).

Table 12: Pearson correlation between output and per-
ception of experiment 1.

We conclude that although linearity parameter is easy to
calculate using the chord length algorithm, it produces
occasional false positives and negatives and, even worse,
systematic false positives for smooth curves of low density.

4.2.2 Standard Hough Transform

The results of the Standard Hough Transform algorithm
are shown in the SHT column of Table 10. The parameter
shown is the signal-to-input ratio (STIR), i.e. the number
of sinusoidal curves which intersect at a particular cell of
the p-0 matrix.

It is not obvious how to find an appropriate threshold
from these results.

It appears that the false results depend on the stroke
length (and the derived parameter SHT columns in Table
1). Examples 5 and 20 have very high values of SHT col-
umns, so the SHT algorithm is stricter than humans when
classifying long strokes as lines. The false positive exam-
ples have low values of SHT columns, making the SHT
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algorithm less strict than humans when classifying short
strokes as lines.

Table 11 shows that there is no correlation between the
result of Signal-to-Input ratio of SHT and the tolerance.

Table 12 shows that, overall, SHT has a weak correlation
with human straight line perception, and if we also take
into account the fact that the algorithm evaluation depends
on the stroke direction, we can conclude that this algorithm
does not allow us to obtain a good estimation of stroke
straightness.

4.2.3 Normalised Hough Transform

First, as noted in Section 3.2, the Normalised Hough
Transform requires additional tuning parameters: the num-
ber of rows and columns of the p-6 matrix. To this end, we
analysed the signal-to-input ratio for each example in ex-
periment 1 with several versions of the algorithm:

- We analysed the influence of the number of rows
(i.e. discretisation of 6 which corresponds to fidelity
in rotation/inclination), by varying this parameter
from 91 to 361 in steps of 30.

- We analysed the influence of the number of col-
umns (i.e. discretisation of p which corresponds to
fidelity in stroke length), by varying this parameter
from 31 to 1199 in steps of 4.

We obtained the STIR for each stroke example and each
combination of parameters, and compared them with the
percentage of human perception as a straight line (see Ta-
ble 10).

We find that human beings are more decisive than algo-
rithms when evaluating good quality or bad quality strokes.
The NHT algorithm frequently finds some residual
straightness when humans completely reject a bad stroke,
and when the size of the accumulator matrix cells are small
enough, the algorithm will find some imperfections even
when most of human beings ignore them and perceive the
stroke as a good straight line.

As a consequence, we assume that discrepancy between
humans and the algorithm is higher for very good and very
bad quality strokes than it is for average quality ones. This
means that the tuning parameters which fit the NHT algo-
rithm to human perception are different for the three rang-
es. Since the threshold which distinguishes between strokes
representing straight and not straight lines clearly belongs
in the intermediate range, we removed the good and bad
strokes and concentrated our further analysis on average
strokes.

The best matches between NHT STIR and human per-
ception occur when threshold values are between 5% and
95%.

Considering only those examples within this range, we
summarised the results of each combination (each particu-
lar pair of number of rows and number of columns) as a
single parameter: the absolute differences between the re-
sults as calculated by NHT algorithm and as perceived by
humans (%YES). Figures 7 and 8 respectively show how

(© The Eurographics Association 2013.
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this parameter varies with respect to different numbers of
rows and columns. The lower the difference, the better
STIR correlates to human perception. Therefore, the mini-
mum function value gives us the best choices for rows and
columns.
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Figure 7: Influence of number of rows.
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Figure 8: Influence of number of columns.

Analysing Figures 7 and 8, we chose a 180x143 matrix
size, which minimizes the difference between STIR and
%YES (the minimum values is 423.94). In subsequent
experiments with NHT, we used 180x143 p-0 matrix

The results of the STIR of the Normalised Hough Trans-
form algorithm are shown in the NHT column in Table 10.
As Table 12 shows, this algorithm has a high (0.827) and
significant (at 0.01 level) correlation with human percep-
tion. Using a threshold of 52%, there are no false nega-
tives, and no false positives.

However, there are two borderline examples (9 and 18)
which are close to being false negatives, with NHT STIR of
52.08 and 53.49 respectively.

There are also two examples (11 and 27) for which the
STIR value is very close to the threshold value. These are
characterised by having a high value of tolerance (6.46 and
9.64 respectively). According to Table 3, tolerance and
positive results of human perception (YES) maintain a high
negative correlation (-0.858) at 0.01 level. If we modify the
algorithm by adding the extra condition that the tolerance
must be lower than a certain threshold value for us to con-
sider a borderline stroke as a straight line, all of the doubt-
ful cases can easily be resolved.

Finally, it seems that obliqueness influences perception
of strokes as straight lines, so perhaps obliqueness should

(© The Eurographics Association 2013.

also be considered when determining the threshold value
for tolerance.

4.2.4 Replicating obliqueness distortion in straightness
perception

As a conclusion of our second experiment (Section 2.3),
we stated that the orientation of the line influences the
human perception of straightness. We want our algorithm
to replicate this. Hence, we define a variable tolerance
threshold which becomes stricter for orientations easily
perceived by humans, and relaxes for orientations poorly
perceived by humans.

In the light of the ANOVA analysis results (Table 7) the
Obliqueness factor could be considered a secondary factor
as its weight (F-test value) is roughly 20 times lower than
the weight of the factor which defines the type of stroke
(NHT STIR). For this reason, we defined a Coefficient of
Obliqueness (COB) which affects the threshold value de-
pending on the stroke’s obliqueness.

According to Table 8, people seem to be strictest when
obliqueness is around 0.2 (strokes close to the horizontal or
vertical directions), and least strict when obliqueness
reaches 1 (slope of 45°). From Table 8, the perceptual vari-
ation between the maximum value (3.01 for obliqueness of
0.8) and the minimum one (2.54 when obliqueness is 0.2)
is 9.4%, so we suggest use of one coefficient which will
affect the threshold value by up to 10% of its value.

In order to model our Coefficient of Obliqueness so that
it behaves similarly to humans, we use a sinusoidal func-
tion where the input variable (x) is the stroke’s obliqueness
(Figure 9). The maximum value (at obliqueness 0.2) is 1.0,
and the minimum value (at obliqueness 1.0) is 0.9. This
function has been chosen for its characteristic of continuity
between two extreme values, and its ease to be adapted to
the behaviour we seek.

COB = sin ((x+0.125) (4n/3))/20 +0.95  (3)

Where the frequency of the wave is defined as 2/3, the
peak deviation of the function from the average value will
be 5%, which means that the amplitude must be 1/20, and
the average value to which the wave oscillates is 0.95. In
order to get the maximum value of deviation when
obliqueness is 0.2, we introduced a phase lag in the wave
0f 0.125.

2 &t 62 03 o8 0 88 67 08 08 1
Obliqueness

Figure 9: Coefficient of Obliqueness.
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We apply the COB only to the NHT tolerance parameter.
We do not apply it to the NHT primary threshold since
NHT is a robust algorithm and the influence of the stroke’s
direction has been removed by pre-rotation to the horizon-
tal. We do not apply it to the Chord Length algorithm be-
cause this only depends on chord and edge lengths which
do not depend on the orientation of the stroke. And we do
not apply it to the SHT because this already depends on the
orientation of the stroke.

The results of tolerance for the first experiment taking
into account the varying threshold are shown in the column
“Tol*COB” of Table 10.

As can be seen in Table 10, all examples perceived as
straight lines by more than 75% have a tol*COB maximum
value of 5.3. Therefore our preferred algorithm includes a
secondary condition such that a stroke must have a NHT
STIR higher than 52% and also a tol*COB parameter lower
than 5.3 to be classified as a straight line.

5. Conclusions

In this study we propose that recognition of straight lines
should match human perception, rather than the intentions
of the designer who produced the sketch.

We compare two algorithms for detecting straight lines:
the simplest (chord length) and the most popular (Hough
transform). We conclude that neither can be easily tuned so
that machine interpretations replicate human interpreta-
tions. Instead, we propose a new algorithm based on a
modification of the Hough Transform which matches hu-
man interpretations acceptably well.

Chord length (when tuned with a linearity threshold of
95%) has a reasonable correlation with human perception,
but some false positives and negatives still appear. More
worryingly, systematic false positives occur for smooth
curves of high curvature (lines with undulations and with-
out oscillations). We conclude that this approach should be
avoided, as it ignores important perceptual assumptions.

SHT correlates poorly with human perception, and even
finding an appropriate threshold for signal-to-input ratio
(STIR) value is problematic. Small variations in STIR
threshold produce very different classification results. In-
stead, we should use an approach which is less sensitive to
the analysed parameters.

The proposed Rotated NHT algorithm solves these prob-
lems. With a STIR threshold of 52%, the algorithm repli-
cates the way humans accept and reject strokes as lines in
all cases tested in our experiments. However, some exam-
ples have STIR values near the defined threshold, so we
include an additional condition to discriminate such doubt-
ful cases: the tolerance threshold must be lower than 5.3 in
order to prevent false positives.

We have also determined that the obliqueness of strokes
appears to have a slight influence on the perception of a
straight line. For this reason, we vary the threshold of tol-
erance by up to 10% depending on the stroke’s oblique-
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ness, using the Coefficient of Obliqueness described in
section 4.2.4.
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