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Abstract 
A method suitable to automatically detect and reconstruct the normalon and quasi-normalon 
typologies is presented. Normalons are those particular polyhedrons where all edges in a corner meet 
at 90°, and all intersecting faces define a 90° dihedron. Quasi-normalons are those objects whose 
wireframe structure can be reduced to normalon by deleting some edges, without loosing any vertex. 
Many skeletons used to model mechanical parts and rough sketches of a large class of buildings 
belong to one those categories. 
The method is based on the relationship between the angles defined by the orthogonal projections of 
three concurrent orthogonal segments and the angles that every one of those segments determine with 
its own projection. Hence, final models are obtained whenever the departure 2D line drawings are 
exact axonometric representations of normalons or quasi-normalons, and good tentative models are 
obtained in many other cases. 

Key words: 3-D Reconstruction, Line Drawings Reconstruction, Visual Perception, Axonometric Drawings and 
Geometric Modelling. 
 

1. Introduction 

As was said many times before (Ullman, 1990; 
Cugini, 1991; Jenkins, 1993; Dori, 1993; Company, 
1995), CAD systems have non-sequential (graphic) 
outputs, but accept only sequential (verbal) inputs. In 
the contrary, design process, and in particular 
conceptual design, needs non-sequential thought. 
Consequently, automatic solid-model generation from 
standardized Engineering Drawings is seen as an 
efficient way to establish a fluid communication 
between designers and CAD systems; at least in the 
present transition period from design-by-drawing to 
virtual prototyping paradigms. To go into this 
direction, automatic line-drawings reconstruction is 
one essential problem to solve. 

Automatic line drawings reconstruction is now a 
well-established area in the Computer Vision field. 
For more than 30 years, since the pioneer work by 
Roberts (1963), some very different approaches have 
been presented. The works by Sugihara (1986), 
Nagendra and Gujar (1988) and Wang and Grinstein 

(1993), are good references to introduce the earlier 
advances. 

In line drawings reconstruction, the input is a 2D line 
drawing, while the output is a geometrical three-
dimensional model. We will use the term drawing to 
refer to the departure 2D line drawing, and model will 
be the wireframe, faces or solid models obtained 
when reconstruction takes place. Just wireframe and 
face models obtained from single axonometric view 
approaches are directly related to this paper. 

Only “graph-like” drawings are considered during 
axonometric inflation. In other words, drawings must 
be made of line-segments (interpreted as projections 
of edges) and junctions (projections of vertices). The 
term junction will refer to a point were one line-
segment ends, or two or more line-segments meet in 
the drawing. Line-segments, or simply lines, are the 
elements connecting two junctions in the drawing, 
while edges are the elements connecting two vertices 
in the model. The general point of view assumption 
applies: each junction in the graph represents one and 
only one vertex in the model, and each line in the 
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drawing represents one and only one edge in the 
model. Finally, no difference is made in the drawing 
between visible and non-visible edges, and all edges 
must be drawn. 

1.1 Normalon and quasi-normalon typologies 

While in the past the objective was a general 
approach aimed to reconstruct a general class of 
models, nowadays the need to classify models in 
specific and useful typologies is recognized. 
Recently, some methods designed to cope with 
specific typologies, like minimal origami (Parodi, 
1996), have been developed, because it is assumed 
the reconstruction is more effective when a particular 
approach is fitted to the model typology. In our 
approach, a main restriction also applies to the nature 
of the model, because only normalon polyhedrons are 
considered. 

The name is a generalization to the polyhedrons 3D 
world of normalon polygons, defined by Dori (1992) 
as those having the property that the angle between 
any two adjacent sides is 90º. Normalons are those 
particular wireframes or face models where exactly 
three edges meet in every corner and they do at 90°. 
Consequently, every pair of intersecting faces defines 
a 90° dihedron. The typology is suitable to be easily 
extended to quasi-normalons; defined as those 
objects whose wireframe structure can be reduced to 
normalon by deleting some edges, whilst ensuring no 
one vertex is loosed during the process and any 
disconnected subgraphs appear. 

There are many examples in the line drawings 
reconstruction literature where normalons and quasi-
normalons appear (Marill, 1991; Lipson and 
Shpitalni, 1996; Leclerc and Fischel, 1992) (see 
figure 1). 

 

(a) 

(b)  
Figure 1: Some (a) normalons, and (b) quasi-

normalons appeared in line drawings reconstruction 
literature. 

The typology is not so restrictive as it seems at first 
glance, because sketches of many skeletons (or 
“control structures”) used to model complex 
mechanical parts in 3D CAD modelling systems (see 
figure 2), and many sketches of architectural 
buildings (Turner et al, 2000) (see figure 3), belong to 
this category. 

 
Figure 2: Normalon skeleton. 

 
Figure 3: Quasi-normalon building structure. 

1.2 Related work 

The clearest antecedent to the Axonometric Inflation 
was the approach by Lamb and Bandopadhay (1990). 
Lipson and Shpitalni (1996) also presented a strategy 
for accelerating and improving convergence in 
“orthogonal” (normalon) models. In their approach, 
lines in the sketch are associated with one of the three 
orthogonal directions, and vertex positions are 
computed starting at an arbitrary origin point with an 
arbitrary depth of zero and advancing to adjacent 
points using lines parallel to the three orthogonal 
directions. 

The entire process described by Lamb and 
Bandopadhay included a tiding phase, where input 
drawing was converted to a graph-like drawing. Then 
one group of main axes (x, y, z) was given as input. 
Next, labelling and face detection were automatically 
done, and candidate faces, or “regions”, were 
obtained. Any face parallel to one coordinate plane 
was considered as “main” face, while the rest were 
“oblique”. In the core phase, the coordinates of any 
point in the object could be obtained by calculating 
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the distance, along the x, y and z axes, between this 
point and the origin. Likewise, if the coordinates of 
one point were known, the coordinates of adjacent 
points could be derived relative to the known point. 
The system exploited this concept to determine all the 
coordinates of an object relative to the junction 
selected as the origin (figure 4). 

Holes and protrusions (i.e. disconnected subgraphs) 
could also be solved; provided the labelling and face 
detection process were able to identify whether faces 
happened, and which was the contact face; because 
the object part indicated by the subgraph contacts the 
rest of the object at a surface, rather than an edge. 
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Figure 4: Example of Lamb and Bandopadhay, 
where main and oblique planes, main axis and 

coordinate propagation can be seen. 

The bases of the approach by Lamb and 
Bandopadhay are parallelism and proportionality 
relations in axonometric views. They are two well-
known invariants in parallel projections. In particular, 
all axonometric views (both, orthogonal and oblique) 
inherit those properties, which are intensively used in 
traditional line drawing. 

Nevertheless, the approach is not geometrically 
consistent, because they are the inverse of those 
properties that are applied: a) whenever two lines are 
parallel in the drawing they must correspond to two 
parallel edges in the model, and b) two proportional 
segments in the drawing must always correspond to 
two proportional edges in the model. Hence, by 
assuming reconstruction to be the inverse of 
projection, parallelism and proportionality relations 
are heuristically extended from univocal to 
biunivocal properties. 

In other words, the approach is heuristic because 
those inverse rules are perceptual, rather than 
geometrical properties. Therefore, the approach will 
work if, and only if, the typology of the object 
ensures such rules to be accomplished. Consequently, 
in the approach by Lamb and Bandopadhay, although 
they do not explicitly declare the point, the model 

must be a normalon or a quasi-normalon. Even then, 
quasi-normalons would be here considered as those 
face-models that can be reduced to normalon like by 
temporarily eliminating as much oblique faces as 
needed. 

However, maybe the most important limitation in the 
approach is the need to detect faces before 
reconstruction. This is not a trivial task, because, only 
two-dimensional information contained in the 
original drawing can be used (Shpitalni and Lipson, 
1996). This is why using only what Varley and 
Martin (2000) named “frontal geometry” simplifies 
notably the problem. According to Lamb and 
Bandopadhay hidden lines are a problem because: 
“unless they can provide information about unseen 
structure of an object, they also add a number of 
ambiguities to a drawing”. Certainly, the problem 
was solved because frontal geometry simplified face 
detection, and allowed geometrical reconstruction. In 
addition, the full geometrical model was later 
obtained, because after reconstruction another 
algorithm was used to infer the hidden structure of 
the object. Nevertheless, creation of hidden faces was 
only possible for simple shapes, and no option was 
left for the user to sketch hidden lines to improve the 
description of complex objects in order to avoid 
misinterpretations. 

The second antecedent to the Axonometric Inflation 
comes from the very well known dependence linking 
the axonometric coefficients (ex, ey, ez) and the angles 
between every pair of the reference axis projections 
(XÔY, XÔZ, YÔZ). 

It is described in nearly every standard Descriptive or 
Constructive Geometry texts (Hohenberg, 1956) 
(most of which go back to Polkhe’s Theorem) in 
which way a dependence can be established between 
the angles defined by the orthogonal projections of 
three concurrent orthogonal segments and the angles 
that every one of those segments determine with its 
own projection. However, in classical references, the 
problem was always graphically solved. We, instead, 
can go back to Perkins (1971), or Attneave and Frost 
(1969), to find its analytical formulation, applied to 
solve visual perception problems. Perkins studied the 
bearing of projective geometry on the perceptual 
processes by which pictures are "read" for spatial 
information. To be noticed that Perkins emphasized 
the logical ambiguity of line drawings (their lack of 
distinct three-dimensional information), together with 
the active role of the visual system in making 
assumptions to resolve this ambiguity. Attneave and 
Frost used that formulation to explore the differences 
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between perceived and geometrical depth and 
orientation. 

To sum up, we take profit from previous formulations 
to determine the angle (for instance φZ) between 
every edge (OZ) and its own line-segment (O’Z’) 
when three orthogonal edges are connected to the 
same central vertex (see O in figure 5). It is a 
function of the angles (X’Ô’Z’ and Y’Ô’Z’) between 
the orthogonal projection of OZ (O’Z’) and the 
orthogonal projections of the other two orthogonal 
edges (O’X’ and O’Y’): 

 sin φZ = √ cotg (X’Ô’Z’) 
.
 cotg (Y’Ô’Z’) (1) 

Z 
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Figure 5: Dependence between the angles in the 
orthogonal projection of an (a) “Y” type and (b) 

“W” type of an orthogonal thriedron. 

It can be noticed that the axonometric coefficient 
would be eZ=O’Z’/OZ= cos φZ. 

Finally, the problem of main directions will be 
considered. The reconstruction method proposed by 
Lamb and Bandopadhay requires users to 
interactively determine the projections of the 
reference axis. However, Lipson and Shpitalni 
(1996), proposed a heuristic strategy for obtaining 
prevailing angles and main directions. The angular 
distribution graph (ADG) allows automatic detection 
of main axis. In their own words: “It is possible to 
identify the main axis directions of the intended 
object from this graph.” 

 

# of 
Edges 

θ 
θ 

 
Figure 6: Angular Distribution Graph to identify the 

main axis directions. 

The ADG is constructed by sampling the angle of 
every line-segment in the drawing and plotting it on 
an angular distribution histogram. The ADG is 
filtered to account for the inaccuracy of the sketch (a 
Gaussian distribution curve, with s= 7˚, is 
superimposed onto the ADG and the graph is 
normalized with its maximum to 1.0). The resulting 
ADG qualitatively shows the prevailing angles in the 
drawing. As shown in figure 6, three dominant angles 
appear in strictly orthogonal objects (normalons). 

1.3 Inflation process 

Inflation, or backprojection, is, roughly speaking, the 
inverse of projection. The process is shown in figure 
7 and is based on the following key ideas: 

a) A univocal correspondence is established 
between vertices in the model and junctions in 
the drawing. Every junction does correspond to 
one, and only one, vertex. 

b) A univocal correspondence is established 
between edges in the model and line segments in 
the drawing. Edges do connect those vertices 
whose corresponding junctions are connected by 
its corresponding line-segment. 

c) A Cartesian coordinate system is defined, and 
the XY coordinate plane is made coincident with 
the drawing plane; then, a transformation is 
defined to ensure (X, Y) coordinates of every 
junction in the drawing to be equal to (X, Y) 
coordinates of the corresponding vertex in the 
model. 

 

X 

Y 

Z 

Inflation 

Projection 
 

Figure 7: Inflation of a wireframe from a line 
drawing. 

Thus, each model obtained by inflation is 
characterized by a set of coordinates z = (z1, z2,...,zn). 
Where the number of vertices n determines the order 
of the problem. Obviously, it is an infinite number of 
“valid” sets of coordinates, and the key for inflation 
to give “good” models depends on the strategy used 
to choose the “right” set. Our own strategy to obtain 
the good model is presented next. 
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2. Axonometric Inflation of an orthogonal corner 

Let us suppose an orthogonal projection of an 
orthogonal corner like A’B’C’D’ in figure 8. To 
reconstruct the model (i.e. to determine x, y and z 
coordinates of vertices A, B, C and D) the Cartesian 
coordinate system associated to inflation is used to 
trivially obtain x and y coordinates of all four vertices 
(xA= xA’, yA= yA’, …). 
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Figure 8: Axonometric Inflation of an orthogonal 

corner. 

Next, z coordinates of lateral vertices (A, B, C) are 
related to z coordinate of central vertex (D) through 
the following relation: 

 |zC – zD| = LC’D’ . tan φC (2) 

As shown in figure 9, LC’D’ is the length of C’D’ line 
segment (CD edge projection), and zC and zD are the 
respective z coordinates of both vertices in the 
reconstructed edge. Obviously, φC can be obtained 
from (1), simply substituting X’Ô’Z’ and Y’Ô’Z’, by 
α and β. 
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Figure 9: z coordinates as a function of φ angle. 

The coordinate zC obtained from (2) is relative to the 
z coordinate of vertex D. Nevertheless, for 
reconstruction purposes the z coordinate of vertex D 
can be arbitrarily fixed without loss of generality, 
because the trihedral shape will be the same, only its 
position will be different. 

The solution is still not unique, because there are two 
possible values for zC (figure 10): 

 

φC

φC

Z 

X 
Y 

C1

C2 

C’

D’

D 

 
Figure 10: Two alternative inflations. 

 zC = zD ± LC’D’ . tan(asin(cotg(α) 
.
 cotg(β))1/2)  (3) 

A reversion of all three edges in the corner would 
lead to a second valid solution: the well-known 
Necker’s reversion shown in figure 11. 
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Figure 11: Necker’s reversion in the inflation. 

As both corners in figure 11 are valid, no one 
criterion is applied to choose one of them. Both are 
offered to the user. Nevertheless, some obviously 
invalid corners can appear if plus or minus signs are 
randomly chosen when (3) is used to determine all 
three lateral vertices. To avoid undesired solutions a 
subsequent check is made. 

One of the two Necker solutions is selected when one 
of the two alternatives for the first edge is freely 
chosen (for instance D1C1 or D2C2). Notice that 
maintaining the consistence of the edge determined 
first will be of capital importance in the approach. 
Next, equation (3) is solved for one secondary edge 
with and arbitrary sign. For instance the + sign is 
assigned to obtain: 

 zA = zD + LA’D’ . tan(arcsin(√cotg(β) 
.
 cotg(γ) )) (4) 

Then, to ensure a consistent and valid solution, the 
angle between the secondary edge (AD) and the first 
edge (CD) is checked to be 90º. If the angle differs 
from 90º in less than a tolerance value, the coordinate 
zA is fixed; otherwise, the alternative sign is adopted: 

 zA = zD - LA’D’ . tan(arcsin(√cotg(β) 
.
 cotg(γ) )) (5) 

The process is repeated for the other secondary edge 
(BD), and a final check for the angle between second 
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and third edges to be 90º is made to ensure 
consistence. 

This process is entirely consistent with the human 
strategy of abandoning interpretations found 
inconsistent and trying some alternative. It is the 
hypothesis-making and hypothesis-testing process, 
described in many human and machine perception 
documents. 

2.1 Limitations in the approach 

Equations 1 to 5 are valid for both “Y” and “W” type 
of orthogonal projection of an orthogonal corner 
(figure 12). 

 

D’ 

C’ 

A’ B’ 

α β 

γ 

D’ 

C’ 

A’ 
B’α β 

γ 

(a) (b)  
Figure 12: Corners of (a)“Y” and (b)“W” 

typologies, and their angles. 

The angles measured in the image are always in the 
range [0º, 180º]. Moreover, the projective consistence 
for trihedral orthogonal corners states that for a 
pictured corner to be the orthogonal projection of a 
solid rectangular three-dimensional corner, all three 
angles around the corner must be greater than 90º in 
the “Y” type. And two angles around the corner, each 
less than 90º, must sum to greater than 90º in the “W” 
type (see, for example, Perkins, 1976). 

For the “Y” type corner, it is meaningless which one 
of the three lines act as first edge: in all cases, the two 
angles used in (3) will be in the range [90°, 180°]. 
However, in the “W” type, both angles are in the 
range [0°, 90°] only if the first edge is the central 
edge (C’D’ in figure 12). If any of the two other 
edges is used as central (“W” type with lateral first 
edge), one of the two cotangents will be positive 
while the other will be negative, and this will cause a 
numerical error in (3). 

Furthermore, analysing the real domain of expression 
(3), it can be observed that the function is undefined 
for values of α and β that satisfy either of the 
following two conditions: 

 |cotg α . cotg β| > 1 (6) 

 cotg α . cotg β < 0 (7) 

The expression (6) can be reformulated as: 

 |1 + cotg (α+β) . (cotg α + cotg β)| > 1 (8) 

or 

 cotg (α+β) . (cotg α + cotg β) > 0 (9) 

In other words, if both the cotangent of the sum and 
the sum of cotangents have the same sign, the 
expression (3) will not have value in the real field and 
therefore Axonometric Inflation cannot be applied. In 
the “Y” type, the sum of cotangents is negative (α 
and β are always greater than 90°), consequently (9) 
will only be positive if the third angle (γ=α+β in the 
figure 13) is less than 90°. It is not an important 
limitation because, as was said before, this may not 
correspond to any orthogonal projection of an 
orthogonal corner. In the same way, the “W” type 
will work if the first edge is the central edge and the 
junction accomplishes the orthogonallity rule (α and 
β are less than 90º, and γ greater than 90º). To know 
what happens when a lateral edge is the first edge, let 
us analyse the condition given in (7). 

The condition given in (7) will be verified when one 
of the two cotangents is positive and the other is 
negative. This occurs in the “W” type with lateral 
first edge described above. They may also appear 
when central edge is the first edge, and one angle (α 
or β) is greater than 90° and the other is less than 90°. 
Again, this second case may not correspond to any 
orthogonal projection of an orthogonal corner. 
Nevertheless, in our attempt to solve the “W” type 
with lateral first edge, we solved both cases, because 
we avoided the numerical restriction by simply 
substituting the cotangent of the angle greater than 
90° by its absolute value. This is equivalent to 
substitute the angle by its supplementary; i.e. in 
figure 13, the line-segment A’D’ is substituted by 
A’eqD’. 
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B’ 
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γeq 

D’

C’

A’

B’α β

γ 

A’eq

(a) (b)  
Figure 13: “W” type corner, with (a) one angle 
greater than 90º, and (b) the equivalent corner. 

As both segments are in the same line, the same φ 
angle is obtained. In other words, the angle between 
line segment AD and its projection A’D’ is the same 
defined by the line segment AeqD and its projection 
(figure 14). 
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Figure 14: One “Y” type and its equivalent “W” type 

corner. 

The particular case where the two angles come to 90° 
(a “T” type) does correspond to a degenerate point of 
view where a face (ADB) is orthogonal to the 
drawing or “projection” plane (i.e. the AC edge is 
parallel to the projection plane); hence φZ= 0. 
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Figure 14: “T” type of orthogonal projection of an 

orthogonal thriedron. 

Nevertheless, this particular case is dangerous, 
because z coordinates are trivially assigned, but a 
false collinearity (OX and OY) may be detected, and 
can result in incorrect assumptions. However, is a 
degenerated case, with no practical interest, because 
it corresponds to a non-general axonometry, where 
faces parallel to XOY plane degenerate in lines. 

The degenerated case where any of the two angles is 
180° is also restricted. 

Finally, the particular cases when only one of the 
angles is 90° or 135° (like cavalier axonometry), can 
be solved using an artifice to obtain a tentative 
model. To avoid numerical run-outs, we simply 
modify conflictive angles adding a threshold to avoid 
numerical run-outs. In this way, numerical 
calculation give a finite value, and the resulting 
model is topologically quite good, although its 
dimensions are notably incorrect. 

3. Propagation of axonometric inflation 

The Axonometric Inflation of an orthogonal corner, 
described in previous section, can be easily extended 
to determine all vertices of complex normalon and 

quasi-normalon models by successively calculating as 
much corners as are necessary to finally determine all 
vertices in the model. 

However, the successive corners cannot be 
accidentally chosen. Propagation is the way to ensure 
that relative coordinates of every corner are converted 
to the same absolute coordinates in the model. Hence, 
a propagation tree is needed. We use a particular 
version of Kruskal algorithm to obtain a spanning 
propagation tree formed by all edges connecting the 
successive central vertices. The lateral vertex 
connected through the longest edge is defined as the 
central vertex for the new corner; because it is 
assumed that longer edges are less prone to error than 
shortest do (i.e. the dimensional relative errors are 
minor, and long lines are more accurately drawn in 
hand drawing). The process is repeated until all 
vertices in the model have been determined. In case 
where converting any of the present lateral vertices in 
central ones would generate a circuit (i.e. if all lateral 
vertices have been previously visited) the branch is 
abandoned and the longest lateral edge not yet 
explored is used to begin a new branch. 

For example, in the drawing of figure 15, vertex V0 
was chosen to begin the tree. Using vertex V0 as 
central, V1, V2 and V3 were calculated. Then V3 acted 
as central (because it was in the longest edge 
departing from V0), and V5 and V6 were obtained. 
Nor V5, neither V6 allowed calculation of any still not 
visited vertices. Hence, the branch was abandoned 
and a new one, starting at V1, allowed V4 to be 
obtained. As all vertices had been visited, the process 
ends. 

V0
V1 

V2 

V3 

V4 

V5 V6 
 

Figure 15: Propagation tree of absolute z 
coordinates. 

Notice that in order to prevent undesired Necker 
reversions during propagation, the edge connecting 
previous central vertex with new central vertex must 
be always adopted as first edge for the new corner. 

Finally, to detect possible ill working, due to a bad 
selection of propagation trees, a check is made after 
the final model has been obtained. If the final model 
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is a non-normalon, the tree-nodes corresponding to 
the central vertex from which the non tri-rectangular 
vertices were calculated, are marked as non-valid as 
central vertices, and a new reconstruction is 
attempted trough an alternative propagation tree. In 
case that neither a valid model can be obtained, the 
best tentative model will be delivered and the user 
should be informed about its flaws. 

As faces information is not required in Axonometric 
Inflation, the approach can be easily extended to 
reconstruct quasi-normalon models, like the one in 
figure 16. The temporary elimination of all line-
segments that are non-parallel to any of the three 
main directions determines a normalon, which is 
equivalent if any vertex disappears during the 
conversion and the graph is still connected. 

 

1 

2 

3 

5 

6 

4 
10 

7 

8 

9 

11 

 
Figure 16: Transformation from quasi-normalon, to 

equivalent normalon, by deleting dotted lines. 

3.1 Extension to models of other valences 

It must be highlighted that the algorithm requires 
three orthogonal edges concurring in every central 
vertex. Nevertheless, the restriction applies only to 
central vertices. The valence (the number of edges 
concurring in a vertex) of lateral vertices is irrelevant. 
Consequently, the approach will work if a 
propagation tree can be obtained where all central 
vertices have a valence of three, and, thus, all vertices 
of other valences can be determined as laterals. In 
other words, Axonometric Inflation can be applied to 
the “extended” class of polyhedrons whose 
propagation tree is normalon. 

For instance, in figure 17, 10 is selected as the 
departure vertex. Starting from it, the coordinates of 
the vertices 5, 7 and 9 can be determined. Then, 9 
should be the next central vertex. It will allow 8 and 
11 to be calculated. However, when continuing the 
process, nor 11, neither 8 can be central as long as its 
valence is two. The evaluation continues opening the 
branch connecting 10 to 5, which allows vertices 3 
and 6 to be obtained. Then, we move to central vertex 

6, to determine vertex 4. A new move to 4 allows the 
calculation of 2. Finally, the evaluation of vertex 1 is 
carried out through the vertex 3, concluding the 
definition of the model. 
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Figure 17: Propagation tree, in which all central 
vertices have valence 3. 

It may happen that, in spite of getting an equivalent 
normalon, Axonometric Inflation cannot be applied if 
certain vertices are not accessible through some valid 
propagation tree. This is the case when some 
junctions are only connected to other junctions of 
valence less than three. For instance, in figure 18, 
vertex 3 is only connected to vertex 4, which cannot 
be central because its valence is two. The same 
happens to vertices 6 and 7. 
 1
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5
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10 11 

12 

(a) (b)  
Figure 18: First transformation: from (a) quasi-

normalon, to (b) non-solvable normalon. 

When the valence of a central vertex is less than 
three, equation (3) cannot be used, because one or 
two of the angles (α, β) are undefined. Nevertheless, 
the assumption of the model to be a normalon has 
already been made. Hence, adding fictitious line-
segments is coherent with the assumption and solves 
the problem. Those fictitious line-segments are 
defined of unit length and oriented in accordance 
with those main directions still not present in the 
vertex. In figure 19, fictitious edges 4-F1, 12-F2 and 
6-F3 allow vertices 3, 6 and 7 to be determined. 
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Figure 19: Solvable equivalent normalon. 

When vertices of valence greater than three appear, 
the approach will still work if a valid propagation tree 
can be obtained; i.e. a tree where those vertices are 
not central. When this is not possible, we have 
confined ourselves to obtain one of the potential 
models, by randomly choosing three of the edges that 
converge in the vertex. 

3.2 Extension to collinear edges 

A problem occurs in those central vertices where 
collinear edges converge. In fact, two situations may 
happen. In the first (illustrated in figure 20), let us 
suppose AD (or BD) is the first edge. A simple 
proportionality calculation will allow the 
determination of vertex B (or A), but the z coordinate 
of vertex C cannot be obtained. Applying the 
standard procedure (equation 3), the value of the 
angle φ is determined from the angles defined by the 
line-segment D'-C' with the line-segment D'-A' and 
D'-B'. The possible coordinates for the vertex C are 
determined by the expressions (4) and (5), what 
results in the vertices C1 and C2. Notice that, as CD 
must be perpendicular to both AD and BD, and AD 
and BD are collinear, the plane C1DC2 is 
perpendicular to the line AB. Hence, the edges DC1 
and DC2 are both orthogonal to the edges DA and 
DB. Therefore, the perpendicularity check, where the 
angle between the third edge (CD) and the first edge 
(AD) is checked to be 90º, cannot solve the 
undetermined. The only solution would be to add a 
fictitious edge. In a similar way, it can be concluded 
that, if CD is the first edge, nor AD neither BD can 
be determined unless one fictitious edge is added. 

 

A

A’

C1 

C2 

C’ 

φ 

B

B’ 
D

D’ 
φ 

 
Figure 20: Lack of determination in the Axonometric 

Inflation of collinear edges. 

Therefore, in the selection of the propagation tree, 
vertices with collinear edges are simply considered as 
having a reduced equivalent valence. For instance, in 
the figure 21 vertices 2 and 5 have an equivalent 
valence of 2 (i.e. 4 edges, minus 1 oblique, and minus 
1 collinear). 

Nevertheless, we can take advantage of the particular 
situation when the first edge is the collinear. Then, 
calculation of the third collinear vertex is possible. 
For instance, 1 can be determined if the edge 2-3 is 
known. 
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Figure 21: Drawing with collinear edges. 

It can be seen that in the evaluation of this drawing, 
the lines 1-2 and 2-3, and the lines 4-5 and 5-6 are 
collinear. Hence, initially vertices 2 and 5 cannot be 
used as central. In other words, the vertex 5 will be 
evaluated starting from the vertices 4 or 6, and the 
vertex 2 will be evaluated in an independent way 
starting from the vertices 1 or 3. 

3.3 Extension to false parallel edges 

Accidental points of view can cause erroneous 
detections of non-normalons as normalons or quasi-
normalons. Such a case happens if two non-parallel 
edges are accidentally projected as parallel lines in 
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the drawing. The figure 22 shows an example where 
the edge 5-6, would be considered parallel to the 
edges 1-4, 2-3 and 7-8, although it should be really 
interpreted like crossing edges. 
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5 

9 

4

7

6 

3 

8 

 
Figure 22: (a) Model prone to (b) false edge 
parallelism due to a particular point of view. 

In this case, vertex 2 has an equivalent valence of 2 
and is avoided in the propagation tree. Hence, the 
“correct” reconstruction is obtained. 

Other false parallel edges (like V1V2 and V1V3 in 
figure 23) can cause ill working that is only detected 
in the final check made after the model has been 
obtained. In the drawing of figure 23a, two accidental 
parallel conditions happen. As a result, vertex V1, is 
erroneously considered as having an equivalent 
valence of 3, and can be used as central vertex; 
resulting in a model like the one shown in figure 23b; 
where vertices V1 and V2 would be detected as a non 
orthogonal and the invalidation process described 
above will be fired. 
 

V1 

V2 
V3 

V2 

V1 

V3 

(a) (b)  
Figure 23: Quasi-normalon represented in (a) a 

drawing with false parallel lines and (b) its incorrect 
reconstruction. 

4. Main directions 

Automatic detection of main directions is of capital 
importance for Axonometric Inflation. First, it is 
important to decide whether a drawing represents a 
normalon, because the decision is made by checking 
if three and only three main directions are present in 
the drawing. Second, because main directions are 
used to determine axonometric axis. 

4.1 Automatic detection of main directions 

The methodology proposed by Lipson and Shpitalni 
(the angular distribution graph) was adopted to 
determine main directions. Nevertheless, at present a 
simplified version is used, because our input 
drawings are “perfect” (both because they are initially 
drawn with a drawing CAD tool, or because they are 
tidied in a pre-processing step). Hence, three main 
directions are determined by simply counting the 
number of line-segments that are parallel to each 
other. To prevent round offs, a threshold of 3º is used 
to decide whether a line segment is to be considered 
parallel to other. Then, the three more frequent are 
selected as main directions. In other words, they are 
considered main directions those that appear most 
times in the drawing. An additional check is made to 
ensure that junctions with those three directions exist. 
In the figure 24, a model proposed by Lipson and 
Shpitalni shows four directions and their frequencies. 

d4=4 

d2=12 
d3=12 

d1= 8

 
Figure 24: Quasi-normalon with four directions. 

Sometimes, the process described above results in an 
erroneous choice of main directions. In the figure 24, 
the combination (d1 d2 d3) would be selected, since 
their frequencies are greater than the one given by the 
direction d4, and junctions with those three directions 
exist. Consequently, the reconstructed model would 
be the one shown in figure 25. 

 
Figure 25: Perceptually erroneous reconstruction. 

Perkins (1976) demonstrated that perceptual rules are 
restrained by projective geometry. This means that 
projectively impossible regularities are not used in 
human perception. The rule of projective consistence 
for trihedral orthogonal corners were mentioned 
above: for a pictured corner to be the projection of a 
solid rectangular corner in space, either all three 
angles around the corner must be greater than 90º or 
two, each less than 90º, must sum to greater than 90º. 
The rule applies equally to parallel and perspective 
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projection, so long as the line of sight is 
approximately perpendicular to the picture surface. 
Hence, checking the projective consistence is the 
main criteria to detect false main directions (figure 
26). 

 

<90º 

A 

 
Figure 26: Projectively impossible orthogonal 

corner. 

Applying this rule, the combination (d1 d2 d3) would 
be rejected due to the vertex A to be a projectively 
impossible orthogonal corner. The combinations (d1 
d2 d4) and (d1 d3 d4) would be rejected because they 
are not present in any vertex (i.e. they are 
topologically incorrect). Only the combination (d2 d3 
d4) would be accepted. 

Finally, to improve the selection process, two 
perceptual rules are applied: for the same frequency, 
longest lines are preferred, and combinations 
including directions parallel to contour edges are 
explored first. 

As was said before, the edges in normalons are 
oriented according to three and only three directions. 
Hence, this seems a good criterion to discriminate 
whether the model is a normalon. Unfortunately, the 
opposite is not always true, i.e. sometimes three main 
directions do not correspond to three-dimensional 
edges of a normalon model. For instance, the model 
shown in figure 27, proposed by Lamb and 
Bandopadhay, would be classified as quasi-normalon, 
instead of prismatic, because one of the three vertices 
A1, A2 or A3 would be considered as an orthogonal 
corner. 

 

90°? 
A1 

A3 

A2 

 
Figure 27: False orthogonallity. 

Unfortunately, checking for projective consistence 
can help to reject some of the false orthogonal 
corners in figure 27, but not all three would be 

rejected. Face detection would be required to 
discriminate such cases. 

4.2 Axonometric axis 

After reconstructing by Axonometric Inflation, the 
resulting model is referred to the Inflation coordinate 
system (see OIXIYIZI in figure 28). However, an 
axonometric reference system would be better. 

In the approach by Lamb and Bandopadhay, the 
Front Axonometric System (OFXFYFZF) is implicitly 
adopted, because the largest region is considered first, 
and the lower left junction is assigned as the 
reference vertex. Hence, the reference vertex is 
implicitly assigned as the one with the lowest 
position in the best face, which is the one contained 
in a main plane and with the biggest line-segment. 
This choice has a rough geometrical meaning. It 
assumes that the origin is in front of the model, the 
model is being observed from an upper point of view, 
and the origin is in the “ground” or base plane (the 
plane XOY, because vertex Z is considered vertical). 
 

Inflation 
Reference 

System 

Rear 
Axonometric 

System 

YR

OR Front 
Axonometric 

System 

XR 

ZR 

ZI 

YI 

XI 

OI 

OF 

YF 

XF 

 
Figure 28: Reference Systems in Axonometric 

Inflation. 

In our approach, Inflation Reference System was 
used to reconstruct, and a post-processing applied to 
finally reference the model to the Rear Axonometric 
System. 

In order to determine the Rear Axonometric System, 
the three main directions must be previously 
determined. Then, as long as the same geometrical 
assumptions described above are made, the origin 
(OR) is made coincident with one vertex in the graph 
of inverted Y typology, as close as possible to the 
geometric centre of the graph, and connected to the 
largest line segments. If the previous three conditions 
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are incompatible, the order in which they are listed 
above indicates their priority. 

5. Results 

Axonometric Inflation has been implemented and 
tested on a program called REFER, that is being 
developed by the authors. C++ is used to implement 
the calculations and data management; Graphical 
User Interaction is achieved by calling win32 
operations through Visual C++, and Open GL was 
chosen as the best alternative to visualise 3D models. 

The input data is a drawing made of line-segments 
and junctions, supposed to be some kind of 
axonometric orthogonal projection of a normalon or 
quasi-normalon model. The drawing is a graph-like 
stored in DXF or IGES format. The output is also a 
DXF or IGES format containing a wireframe or 
surface model, because face detection can be done 
separately. 

The algorithm has proved valid for all normalon of 
valence 3, and almost all type of quasi-normalons, in 
more than two hundred models like those shown in 
figure 29. 
 

 
Figure 29: Some drawings reconstructed with 

REFER. 

Strictly speaking, Axonometric Inflation is only valid 
when the image corresponds to an orthogonal 
axonometric projection. Nevertheless, for certain 
oblique axonometric views where the projection does 
not deviate excessively from orthogonal, the 
proposed method does succeed in reconstructing 
approximate models. 

As was said above, in Cavalier’s axonometric views 
(figure 30), Axonometric Inflation is unable to obtain 
any model. Nevertheless, an artifice consisting in 
arbitrarily adding a threshold to conflictive angles is 
employed. The values proposed are 91º instead of 90º 

and 134º instead of 135º. A threshold minor than 1º 
enlarges oblique faces; i.e. proportion L/H in figure 
30 is clearly greater than perceived proportions in the 
Cavalier drawing. In the other hand, a greater 
threshold rapidly increases local distortions (like the 
one observed in vertex A in figure 30). 
 

(a) (b) 

A 

L 

H 

 
Figure 30: Normalon model in (a) a Calavier 

drawing, and (b) a view of its “tricky” reconstruction 
by Axonometric Inflation. 

To sum up, the Axonometric Inflation will give exact 
results only when applied to normalon models, 
projected according to orthogonal and parallel 
projections. Under such conditions, perfect models 
are obtained, and none refinement procedures are 
required. 

Nevertheless, when applied to non-normalon 
polyhedral, or when applied to non orthogonal 
projections where the line of sight is almost 
orthogonal, the resulting 3D model is still useful to 
obtain tentative models, which can be used as 
departure models to carry out an optimisation 
process. As was said elsewhere (Conesa et al, 1999), 
tentative models are useful in optimisation 
approaches, because they allow beginning the 
optimisation process very close to the global 
optimum, escaping from local optima (figure 31). 

 

X 

Y 

Z 

 
Figure 31: Reconstruction by optimisation 

,beginning from a tentative Axonometric Inflation 
model. 
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6. Conclusions 

Due to the great variety of models to be 
reconstructed, a general approach for automatic solid-
model generation from engineering drawings has 
proved to be inefficient. Consequently, the “divide 
and conquer” strategy is adopted. 

The heuristic inflation rules seem to be a good 
approach to directly solve some simplest models. 
They may also serve to get departure models, which 
improve efficiency in other approaches, like the 
optimisation process based on regularities; where 
departing from the drawing constitutes a real 
problem, since it is a local minimum. 

One of such heuristic approaches is Axonometric 
Inflation, which allows direct reconstruction of 
wireframe models from orthogonal, axonometric 
projections of normalons and quasi-normalons. It is 
fast and accurate, Line Drawings with hidden lines 
can be reconstructed, and two-dimensional face 
calculations are not required. On the contrary, it gives 
poor results for non-normalons, and is very sensitive 
to oblique projections. Nevertheless, in many of such 
cases, it can still be used as a tentative model for 
optimisation approaches. 

Axonometric Inflation does not work at all for 
inaccurate drawings. Hence, a pre-processing is 
necessary for tiding the drawings. 

Finally, the automatic detection of main directions is 
accomplished. 
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