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Abstract 
Optimisation Approaches are used to reconstruct solid models from perspective (non-orthographic) Line 
Drawings. However, they fail to obtain the global optimum required to succeed in the reconstruction, 
unless complex tuning in the optimisation algorithms is done. 
Tentative models are being introduced to prevent optimisation from falling into local minima. In this 
paper, a heuristic approach to obtain one of such tentative models is proposed. The heuristic is based on 
perceptual rules, and gives good results for a large class of polyhedral objects. 
Keywords: Document and Text Processing. Graphics recognition and interpretation. Artificial 
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1. Introduction 

Since the pioneer work by Roberts 1, Line Drawing 
Reconstruction is seen as a sort of artificial perception 
problem. In the words of Hoffmann 2, “we do create 
what we see”. Hence, perceiving is constructing mental 
objects or scenes from signals or cues found in an 
image. 

Visual Perception is assumed to act in a tentative and 
iterative way. “Organization forces”, guide the brain to 
interpret the figure, and successive organizational 
attempts are carried out, until the forces are minimized. 
When contradictory interpretations appear, the brain 
looks for the best-organized form, and discards those 
forces been incompatible with the prevailing form. 
Consequently, an iterative process where some initial 
solution is refined according with some perceived 
characteristics, is a good strategy to get what the sole 
application of geometry rules cannot obtain: a 3D 
psychologically plausible model. This is why 
Reconstruction can be described in terms of a 
mathematical optimisation problem. 

Cues are three-dimensional information contained in 
two-dimensional figures. Mathematical formulation of 
cues, so-called “regularities”, is the way to make 
explicit human perceptions. Perception psychologists 
borrowed the term from classic geometry, thus the first 
appearances of the term regularity associated with 
graphical representations are due to the Gestalt 
Psychologists, who named regularities to “those 
relations that cannot be an accident”. Latter on, when 
some Scientific Visualization areas, related with 

semantic perception, began their own research, the term 
regularities became synonymous of “template to 
describe images in a compact or convenient form”. 
Finally, in the geometrical reconstruction field, 
regularities are interpreted as “those properties of the 
image that must correspond to some properties the 
searched model also has”. 

Consequently, it is supposed that the properties 
describing “how the model must be” can be discovered 
by inspecting the departure image. Then, those 
regularities can be formulated in a mathematical 
language 3, and the Objective Function can be easily 
defined as a weighted sum of regularities 4. 

In general, only one solution is “good” in terms of 
psychological plausibility. That is, human observers 
seem to have no doubts to choose the appropriate 
solution. However, mathematical formulation of cues 
has only been faced by a reduced group of 
reconstruction community researchers 5. Hence, at the 
present, regularities led to a poorly defined objective 
function, which causes global minimum to be very 
difficult to obtain. Even Global optimisation algorithms 
do fail. 

Of course, an appropriate taxonomy of regularities 
would be a general approach to solve the problem. 
Nevertheless, a simple heuristic solution can be more 
efficient in some particular cases, because, departing 
from a good tentative model, even a simple 
optimisation algorithm with poorly defined Objective 
Function should find the global optimum. 
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2. Related approaches 

Automatic line drawings reconstruction has been a 
research area in the Computer Vision field for almost 
40 years. The works by Sugihara 6, Nagendra and Gujar 
7 and Wang and Grinstein 8, are good references to 
introduce the earlier advances. 

Three approaches can be considered as direct 
antecedents to optimisation: Edge Labelling, Linear 
programming, and Perceptual. 

Labelling approaches 9-14 are not true reconstruction 
processes; but its methodology can be helpful to detect 
“candidate” vertices; edges and faces in any given 
graph. Consequently, they can be useful to detect 
“perceptual relations” in the graph. 

Linear programming 15-19 fails because its formulation 
is not tolerant to faults. Nevertheless, bring us the 
important idea that reconstructing is something like 
“looking in the graph for a set of independent 
geometrical conditions (expressed in algebraic 
notation) the model must fit”. 

Finally, Perceptual approaches 20 show an effective 
way to introduce perceptions and invariants (or 
“regularities”) in algebraic formulations. However, the 
approach lacks a “natural” way to weight and balance 
different perception rules, and forces all perceptions to 
appear in the final model. 

Optimisation approach has evolved from the ideas by 
Marill3, Braid and Wang 21, Leclerc and Fischler4, and 
Lipson and Sphitalni 5,22,23. 

As was said elsewhere 24, we did make some 
improvements, mainly in the tuning of optimisation 
process to get a more robust and automatic process. We 
did also explore a global minimum optimisation 
algorithm 25. We introduced Simulated Annealing 
algorithms because they claim to be able to find global 
minimum. Nevertheless, our experience was 
discouraging because global algorithms fail (as much a 
local do), when departing from a bad initial model, and 
when poor or ill-defined regularities are used to 
generate an Objective Function unnecessarily complex 
and prone to local minima. 

Consequently, the success of optimisation approaches 
may depend on a correct tuning of a global 
optimisation strategy, or a very careful choice and 
weighting of all the regularities involved in the process. 
Nevertheless, we do believe than a simple optimisation 
from a tentative model is more efficient in some 
particular cases. 

The best antecedent we could find comes from Lipson 
and Shpitalni 5, who proposed a “preliminary 
reconstruction” based on the angular distribution graph 

analysis for obtaining prevailing angles and main 
directions. When three angles are obtained, a 
perceptual rule is applied to obtaining a tentative 
model. 

To sum up, tentative inflation approaches allow 
defining an initial model by applying some simple 
rules. These approaches proved efficient for a wide 
class of polyhedral models, and are quite easy to 
implement and run fast even for complex models 26. 

3. Optimisation approach 

Optimisation approach is a two-step strategy: an 
inflation process is used to transform 2D images into 
3D models, and one minimisation process is used to 
determine the best 3D model. 

3.1. Inflation process 

Only wireframe representations of polyhedral objects 
(“graph-like” drawings) are considered during tentative 
level-inflation. In other words, drawings must be made 
of line-segments (interpreted as projections of edges) 
and junctions (projections of vertices). The term 
junction (or 2D vertex) refers to a point were one line-
segment ends, or two or more line-segments meet in 
the drawing. Line-segments, or simply lines, are the 
elements connecting two junctions in the drawing, 
while edges are the elements connecting two vertices in 
the model. 

As the general point of view assumption must apply, 
two univocal correspondences exist between vertices in 
the model and junctions in the drawing, and between 
edges in the model and line segments in the drawing. 
Each junction in the graph represents one and only one 
vertex in the model, and each line in the drawing 
represents one and only one edge in the model. 
Consequently, edges do connect those vertices whose 
corresponding junctions are connected by its 
corresponding line-segment. 

The inflation is supposed to be the inverse of an 
orthogonal projection (figure 1). Thus, to establish a 
simple relation between junctions in the drawing and 
vertices in the model, a Cartesian coordinate system is 
defined, where the XY coordinate plane is made 
coincident with the drawing plane. Then inflation is 
easily defined to ensure (X, Y) coordinates of every 
junction in the drawing to be equal to (X, Y) 
coordinates of the corresponding vertex in the model. 
Thus, each model obtained by inflation is simply 
characterized by a set of coordinates z = (z1, z2,...,zn). 
Where the number of vertices n determines the order of 
the problem. 
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Figure 1: Inflation of a wireframe from a line drawing. 

3.2. Optimisation 

Projection is a univocal transformation, but its “pseudo 
inverse”, inflation, is not univocal. An infinite number 
of geometrically valid models can be projected in the 
same figure. 

 

Z 

Y

X  
Figure 2: Some models of the orthographic extension 

of a line drawing. 

Marill 3 called orthographic extension to the full set of 
three-dimensional objects whose orthogonal projection 
equals the given drawing. Some of the models 
belonging to the orthographic extension of a 2D line 
drawing are shown in figure 2. 

It follows that some criteria to choose one particular 
model among the infinite ones contained in the 
Extension must be defined. As far as regularities can be 
formulated in a mathematical language, one Objective 
Function (F) can be easily defined as a weighted sum 
of regularities: 

 F(z)= Σ αj Rj(z) (1) 

where, αj is the j-th weighting coefficient, and Rj(z) is 
the j-th regularity. 

A set of coordinates z = (z1, z2,...,zn) is obtained 
minimising F with a minimisation algorithm 27. The 
resulting inflated model is supposed to fit all 
regularities, and, hence, to be the desired model. 
However, mathematical formulation of cues 
(regularities) led to a poorly defined objective function, 
which causes global minimum to be very difficult to 
find. Figure 3 can illustrate how different lengths in the 
initial step of a descent optimisation algorithm led to 
three different solutions. One of the design subspaces 
(i.e. the values adopted by the Objective Function for z 

coordinates of every pair of vertices), shows many 
local minima, very close from each other. 
 

Local minimium 
Initial step length 9-14 %

Global minimium 
Initial step length < (2,5-7) % 
Initial step length (15-80) % 

Local minimium 
Initial step length �80 %

4 1 4 1 

4 1

Z1= 0 
Z4= 0 

 
Figure 3: Some local minimum in a design sub-space. 

Consequently, heuristic approaches to begin the 
optimisation from tentative models are proposed to 
avoid falling into local minima. 

3.3. Initial solutions 

Up to now, the usual strategy to select one initial 
solution is the simplest one of making all Z coordinates 
equal to 0 (i.e. the departure 2D graph is used as initial 
solution). Unfortunately, the departure graph is a local 
minimum, where many regularities are trivially 
satisfied. For instance, a loop composed by some edges 
and supposed to correspond to a plane face in the 
model, always determine a trivial plane face in the 
graph. 

The strategies developed to “escape” from this trivial 
optimum are all based on heuristic rules to get 
“tentative” initial models, and all of them fall into two 
categories: iterative inflation and direct generation. 

Iterative Inflation techniques are based on “False 
Regularities”, or heuristic rules supposed to be satisfied 
by the final model, and not related to cues in the 
original image. They need not necessarily be satisfied 
by every model; but they allow us to escape from the 
trivial optimum of the figure. 
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Marill 3 proposed the first Iterative Inflation method by 
defining the objective function with just one 
component: MSDA Principle (Minimum Standard 
Deviation of Angles, or maximum equality of each 
three-dimensional angle of a model). The MSDA is not 
a true regularity, because it does not reflect any 
properties of the image that must correspond to some 
properties in the searched model. It is a heuristic rule, 
based on the fact that regular and convex polyhedrons 
have a tendency to accept this assumption, 
consequently it seems easy to guess that approach will 
be well accepted just by some regular polyhedrons 
(equiangular 3D wire frames). 

Leclerc and Fischler 4 introduced a regularity of Face 
Planarity, and found that, obviously, it was trivially 
satisfied in the 2D figure. Hence, they proposed an 
objective function with a linear combination, balanced 
by a parameter λ, in this way: 

 F = FA + λ FI + (1-λ) FO (2) 

Where FI (the “inflation” part) includes a set of 
conditions that are not trivially satisfied in the initial 
solution (z=0), neither are true regularities. Hence, do 
not need to be satisfied in the optimum. FO (the 
“optimisation” part) contains those true regularities that 
are trivially satisfied in the initial solution. Finally, FA 
includes all those regularities that can be always 
applied, because they are not trivially satisfied in the 
initial solution. 

The strategy allows the optimisation algorithm to 
escape from trivial solution using inflation criteria, 
while guarantying that the final solution depends only 
on true regularities. Nevertheless, undesired 
oscillations can happen, causing an ill working of 
optimisation algorithms. In addition, falling into some 
local minimum during inflation can result from small 
changes in tuning parameters, making the escape very 
difficult for the optimisation algorithm. 

The other approach is defining a deterministic process 
to obtain a tentative 3D model. This is the case of the 
“preliminary reconstruction” proposed by Lipson and 
Sphitalni 5, and based on analysing the angular 
distribution graph of lines, to obtain the prevailing 
angles, and hence the main directions. When three 
prevailing angles are obtained, the orthogonal 
perceptual rule (“those angles must correspond to three 
orthogonal directions”) is applied to obtain a tentative 
model. The process begins identifying the main 
directions. Then a model is built assigning a coordinate 
z=0 to an arbitrary node (what is equal to fix the height 
of the pattern regarding the plane of the image, for 
what doesn't suppose loss of generality). The process 
already advances assigning coordinates Z to nodes 
connected to those already known. If the shape has an 

angular distribution with exactly three main directions, 
the assignment of coordinates can spread to all the 
nodes, giving place to a good previous model. 

Direct inflation approaches clearly depend on the 
model topology, but, in our experience, are easy to 
implement, and improve the optimisation process yet 
with simple descent algorithms. 

4. Level inflation 

The reconstruction by levels-inflation of vertices is a 
simple heuristic method of direct inflation (non 
iterative), where a set of z coordinates is determined 
depending on its "typologies". The vertex typologies 
have already been used in labelling approaches to 
validate the figures to reconstruct 9-14. However, 
typologies are not the key of the proposed method, but 
it consists on accepting that there is a high degree of 
correspondence among the typology of each vertex in 
the figure and the z coordinate of its corresponding 
vertex in the model. Therefore, it is supposed that the 
typologies of the vertices can be ordered in sequential 
“levels”, where increasing levels match to growing z 
coordinates. In other words, the approach is rooted on 
vertex labelling methods, but only a simple 
classification of vertices is done (and no one check 
about correctness of the graph is satisfied). Vertices are 
classified according to their typology. Different 
“levels” are assigned to each vertex typology. This 
means a relative z coordinate is supposed to fit to each 
vertex typology. Then heuristic z coordinates are 
assigned to every level, and a tentative model is so 
obtained. 

4.1. Typologies and levels 

The correspondence between typologies and levels can 
be intuitively justified examining the figure 4, where 
the departure image (contained in the XY plane) and 
the psychologically valid model of a cube are shown. It 
may be seen how the six levels have been labelled from 
0 up to 5. 

It must be noticed that edges that are “vertical” in the 
departure image (parallel to the vertical axis) are 
inclined in the final model. This effect is not accidental, 
and makes the difference between perspective line 
drawings and orthographic views. Perspectives are 
obtained by projecting the object after arbitrarily 
rotating it, because, by preventing their faces and edges 
from being parallel to the projection plane, image 
superposition of vertices, edges and faces are avoided. 
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Figure 4: Basic Model for the vertex typology 

definition. 

Obviously, the assignment of z coordinates to levels 
depends on the “pitch” of the model. Pitch angle is 
clearly visible in the lateral view YZ. As far as the 
pitch angle is free, any variation gives different 
projections of the same object. Bowing a little more the 
object of the figure 4 (increasing their pitch), z 
coordinates of vertices labelled 3 would become greater 
than z coordinate of level 4 vertices, although their 
typologies (their appearance in the image) would not 
change until a very big change occurs. 

The “yaw” and “roll” parameters (to continue with the 
analogy of the nautical terms) modify the possible 
perspective views of an object as well as pitch do. The 
yaw angle is measured from the Z axis to the horizontal 
projection of line BD. We observe that when this angle 
clearly differs from zero, the “symmetric” vertices (for 
instance C and E) have different z coordinates. 

Our psychological assumption was that the observer 
tends to make the smallest pitch and yaw movements, 
as a compromise to get a general point of view while 
keeping symmetry. In addition, roll is left zero to 
maintain model verticality. The resulting six defined 
typologies are shown in table 1 ordered in growing z 
values. 
 

 
 

 

 
 

 

  
 

 

  
 

Level 5 Level 4 Level 3 Level 2 Level 1 Level 0 
“Y” “W” “Lateral 

inverted 
W” 

“Lateral 
W” 

“Inverted 
W” 

“Inverted 
Y” 

Table 1: Classification of levels of vertices. 

One additional consideration is that both positive and 
negative pitch angles give psychologically plausible 
solutions, known as Necker reversals. We opted for a 
positive pitch (i.e. the upper face is visible). This 
choice has a rough geometrical meaning, when the 

observer is in front of the model, the model is being 
observer from above, and the origin is in the “ground” 
or base plane. Furthermore, this assumption do not 
mean loss of generality, because changing all z 
coordinates from positive to negative, the reversal is 
obtained (figure 5). 
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4 2 0 
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Figure 5: Two Necker-reverse inflated modes. 

4.2. Correspondence between z coordinates and 
levels 

Heuristic rules are applied to assign values to the z 
coordinates of levels. 

First, we assume that the figure do maintain the 
proportion among the three main dimensions of the 
object (wide, high and deep). That is to say, it is 
assumed that the designer deliberately respects the 
proportions, by choosing the appropriate point of view 
to show the real object proportion or disproportion. 
Therefore, we can suppose that the range of depth (∆z 
= Zmax – Zmin) is similar to width (∆x = Xmax – Xmin) 
and height (∆y= Ymax – Ymin). Hence, as seen in figure 
6, we adopt the value: 

 ∆z = maximum (∆x, ∆y) (3) 
 

∆Z = max(∆X, ∆Y) 

∆X

∆Y

Z 

Y

X 

 
Figure 6: Proportionality assumption. 

In fact, the “minimum box” orientation is different to 
the model orientation, due to the pitch, yaw and roll 
suffered by the object (as can be clearly seen in the 
example of figure 6). Hence, a proportional box is not 
equivalent to a proportional model. Nevertheless, we 
assume that a proportional box induces a rough 
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proportional object, because a proportional box is easy 
to define, while the rules to determine a proportional 
model would depend on the particular typology every 
model has. 

The z coordinate of one vertex can be fixed to an 
arbitrary value without loss of generality, since the 
figure is moved but not changed (it is a rigid solid 
translation). Therefore, z coordinate can be fixed to 
zero for the lower level vertices, and to maximum 
(∆x,∆y) for the upper level vertices. 

Uniform gradation is the simplest strategy to assign z 
coordinates to intermediate levels: 

 zi = i (∆z/n) (4) 

Where n is the number of level jumps (total number of 
levels minus one), whose value is 5 according to table 1 
classification. 

The fixed levels-inflation so defined gives good results 
in convex polihedral with a high degree of regularity 
(figure 7). As a consequence, the subsequent 
optimisation process is unnecesary in some cases. 

X 
Z 

Tentative Level Inflation 
Model 

Final Optimised 
Model 

Y 

 
Figure 7: Good tentative model obtained by fixed 

levels inflation, and subsequent optimization. 

Tentative Level Inflation 
Model 

Final Optimised 
Model 

 
Figure 8: Poor tentative model obtained by levels 

inflation, and subsequent optimization. 

Poor (clearly distored) models appear in other cases 
(figure 8). Nevertheless, they are proved to ve valid as 
tentative models for a subsequent optimisation process. 

The tentative model in figure 8 results from fixed 
levels-inflation of figure 9. Its distortion is produced 
because vertices A and B have the same typology 
(inverted Y), in spite of having obvious different z 
coordinates. This is because the model is a non-convex 
polyhedron with a “fissure” or step. 

 

A B 

 
Figure 9: Polyhedron with fissure. 

This can be solved by an incremental levels-inflation 
where z coordinates of intermediate levels are do not 
only depend on its absolute typology, but on the 
relative typology (the difference of typologies between 
the calculated vertex and another vertex connected to 
it), and the distance to the vertices to which it is 
connected. This proposal is again justified assuming 
the psychological tendency to proportion. 

Consequently, the ZP coordinate of a vertex P is 
incrementally obtained, relative to z coordinate of 
another vertex Q, to which P is connected by an edge: 

 ZP = ZQ + PQ * (LevelP –LevelQ )* ∆z/n (5) 

Where, PQ is the length of the projection of the edge 
connecting P and Q. LevelP-LevelQ is the increment 
(number of jumps) from one level typology to the 
other. Finally, ∆z was obtained in equation (3), and n is 
the maximum number of level jumps. 

The incremental levels-inflation described above, can 
be easily extended to determine all vertices by 
successively calculating as much vertices as necessary. 
A spanning propagation tree 28 is used both to go from 
general (big) to particular (small) details, and to ensure 
repeatability in the tentative inflation. We use a 
particular version of Kruskal algorithm, departing from 
the most central level 0 vertex (the one closer to the 
figure barycentre) and following to the vertex 
connected with the actual through the longest edge not 
yet visited. 

For concave models, this incremental method seems to 
give better results that fixed levels. For instance, the 
incremental inflation of vertex A in figure 10b is 
clearly less distorted than in the fixed inflation of figure 
10a. 
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Figure 10: Polyhedron with fissure: a) inflated by fixed 
levels b) inflated by incremental levels. 

5. Extensions to the method 

To generalize the approach, we introduced two 
strategies to cope with particular cases, and one 
strategy to take advantage of hidden edges. 

5.1. Detection of typologies and predominant edges 

The levels classification shown in table 1 was obtained 
supposing the predominant edge of each typology to be 
vertical. If we analyse the figure 11, it can be clearly 
observed that the vertex A in its initial orientation 
(figure 11b) would be of level 4. Although applying a 
rotation to make vertical the predominant direction, it 
should be classified as level 2 (figure 11c). 

Therefore, to extend the approach to other cases, our 
algorithm detects the predominant direction and 
performs the vertex matching after the rotation has 
been neutralized. 

A B 

C 

D
D

A B 

C 

A

B

C

D

a) b) c)  
Figure 11: Detection of dominant edge orientation and 

vertex alignment. 

Obviously, the concept of predominant direction 
depends on the object typology. Therefore, the 
algorithm to neutralize rotation needs the previous 
detection of the object typology. 

Heuristic criteria to detect such typologies were 
adopted, as summarized in table 2. 

 
TYPOLOGIES OF 

POLYHEDRAL MODELS 
EXAMPLES 

Normalons 

One figure is considered to 
represent a “normalon” whenever 
it contains three, and only three, 
dominant directions. I.e. when 
almost all segment lines are 
oriented in the same three 
directions. 

To quantify the “almost all” we 
have tuned a numerical parameter 
of at least 90% of line segments 
oriented in one of the three 
dominant directions. 

Main 
directions 

 

Prisms 

One figure is considered to 
represent a prism whenever one 
single direction is dominant In 
other words: when the number of 
edges parallel to one direction is 
more than 10% greater than edges 
parallel to any other direction. 

 Dominant
direction 

 
Pyramids 

One figure is considered to 
represent a pyramid whenever one 
single vertex is dominant In other 
words: when the number of edges 
connected to one vertex is more 
than 10% greater than number of 
edges connected to any other 
vertex. 

Dominant
vertex 

 

Table 2: Classification criteria, after image properties. 

Once a normalon is detected, the main direction closer 
to 90º (preferred) or 270º acts as predominant. For 
instance, in the figure 12, θ1 < θ2 and θ1 < θ3, then θ1 is 
chosen as the neutralizing rotation angle. 

 θ1

θ2
θ3

   
a)                                                    b) 

Figure 12: Detection of dominant edge in a normalon 
model: a) Original orientation b) Rotation to see the 

effect of neutralization. 

When an object of prismatic typology is detected, the 
departure image is rotated to get a vertical predominant 
direction (figure 13). 
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θ 

Dominant 
Direction 

           
a)                                                    b) 

Figure 13: Dominant edge in prismatic model: a) 
Original orientation b) Rotation to see the effect of 

neutralization. 

In the case of pyramidal typology, the edge of the 
pyramid is considered as predominant (vertical 
orientation). Hence, independent neutralizations are 
done for every vertex of the base of the pyramid. They 
are rotated to align the predominant edge (the one 
connected to the predominant vertex) with 90º or 270º 
orientations (figure 14). 

 
A

B

C

D
E

F

1

3

5

4

2

6

7

8

9
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a) 

B

1
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7
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5

10 9

D

3

7
8

E

9
4

8

A

1
3

5

4

2

 
b) 

Figure 14: Dominant vertex in a pyramidal object a) 
Original orientation b) Independent rotation of 

vertices. 

Finally, all those that cannot be considered as objects 
of some of the previous typologies, are considered 
indefinite. In such cases, the most frequent direction is 
selected as predominant. In the case where two or more 
orientations appear with the same frequency, the one 
closer to 90º (preferred) or 270º acts as predominant. 

In the figure 15a, both dA and dB appear three times. 
However, dB is closer to the vertical, and therefore is 
selected as predominant edge. 

 

dA

dA

dB

dB

dB dC

dCdd

dd

dA

a) 

 

Predominant 
Direction 

 
b) 

Figure 15: Detection of dominant edge in an indefinite 
object: a) Original orientation b) Rotation to see the 

effect of neutralization. 

5.2. Vertices with more than three edges 

An extension to fit in the levels typologies those 
vertices where more than three edges meet was also 
done. When four or more edges meet in a vertex, three 
edges are selected in a two steps process: 
• The two edges encompassing the rest are selected 

(edges 1 and 5 of the figure 16). 
• The third edge will be the one closer to the 

bisecting line of the angle determined by the two 
edges chosen in the previous step (edge 2 of the 
figure 16). 

 

1 

2 

Bisecting line 

4 

5 

3 

 
Figure 16: Selection of edges that define the typology 

of a vertex. 

5.3. Hidden edges 

The levels inflation can be improved when hidden lines 
are specified in the departure graph. The edges 
visibility allows enlarging the typologies of vertices 
defined in the table 1. Three sub-levels are considered 
to differentiate among hidden vertices (if all the 
meeting edges are hidden), partially hidden vertices (if 
visible and hidden edges meet), and visible vertices (if 
all the meting edges are visible). Obviously, hidden 
edges are assigned the smallest z coordinates, visible 
edges are assigned the greater, and partially hidden are 
assigned intermediate coordinate values. 

The expanded typologies classification is shown in the 
table 4. 
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5 4 3 2 1 0 
Table 4: Extended typologies of levels, with hidden 

edges. 

6. Conclusions 

One heuristic strategy to get inflated models was 
presented as an alternative to existing line-drawing 
reconstruction approaches. It has been implemented 
and tested on an application called REFER, that is 
being developed by the authors. 

According to our experience, the heuristic levels-
inflation seems to be a good approach to get departure 
or tentative models to improve efficiency in the 
regularities-based optimisation process. 

In addition, models very close to the psychologically 
plausible one are obtained when applied to some 
particular kind of models. Moreover, a strategy to 
automatically detect such typologies was described. 
Hence, final good-quality models can be obtained to a 
reduced cost for such typologies. 
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