
© Regeo. Geometric Reconstruction Group

www.regeo.uji.es

Technical Reports. Ref. 03/2007

Geometry and Gesture Recognizers for

Prescriptive Sketch Interpretation

Nuria Aleixos1, Ferran Naya2, Pedro Company1, and Manuel Contero2

1Department of Mechanical Engineering and Construction, Universitat Jaume I, Spain
2DEGI-ETSII, Polytechnic University of Valencia, Spain

Abstract
Prescriptive sketches are used during the product development process to give detailed instructions about the geo-
metric characteristic of the new product for 3D modeling or drawing generation. This paper analyzes the recogniz-
ers that use the ParSketch application for performing the online transformation of a prescriptive sketch into a 2D
parametric drawing. The geometric recognizer RecoGeo analyzes and converts a sketch into its constituent primi-
tives (outlined sketch). The algorithm bases its recognition on features as direction and curvature signatures. Once
the designer has introduced the complete outlined sketch, it can be edited, dimensioned, constrained and lastly
swept to create a solid. To carry out the actions mentioned before, a gesture recognizer –RecoGes– has been de-
veloped. RecoGes provides an alphabet of geometric/dimensional constraints and gesture commands, and bases the
recognition of the intended used action on Fourier descriptors of the polar and direction signatures, resulting the
final classification from a non-linear classificatory function. Discussion and results for both classifiers are com-
mented

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Image Processing and Computer Vision]:
Segmentation – edge and feature detection. H.5.2 [User Interfaces]: Interaction styles

1. Introduction

Engineering sketches play an important role during the
whole product development process [Van05]. But these
sketches are used with different purposes during this proc-
ess. This means different contents and kinds of representa-
tions. Following the classification proposed by Ferguson
[Fer92] we can distinguish among thinking sketches used to
focus and guide non verbal thinking, talking sketches em-
ployed to support discussion on the design with colleagues
and prescriptive sketches applied to give instructions to the
draftsman in charge of making the finished drawing.

Thinking sketches are present especially during the con-
ceptual design stage, where they are used as a very valu-
able tool to explore design alternatives and to serve as a
temporary ideas repository. Computer support for this kind
of sketch has been oriented to improve the functionality
provided by sketching on paper, trying to provide an added
value to sketching on a digital environment, for example,
using a Tablet-PC or LCD graphic tablet. This extra func-
tionality has been directed to improve the graphic quality
of the sketch by means of beautification functionality,
providing as output an improved 2D representation, or it
has been oriented to transform the 2D sketch into a 3D
model.

Two main approaches have been followed to create the
3D model from a 2D sketch: reconstruction-based systems
[CNJC03], where a sketched single view projection is in-
terpreted and a plausible 3D model is automatically gener-
ated; and gestural-based modeling [ZHH96] where model-
ing operations are encoded by gestures that are used to
create a 3D object transforming 2D sketched sections.
From these two approaches the reconstruction based is the
most transparent to the user, since he has only to create the
sketch and it doesn’t require a priori knowledge of a ges-
tural command set.

With respect to talking sketches, computer support for
this kind of sketch can be found in the computer support
collaborative work (CSCW) community. Usually these
applications are focused on promoting both collaborative
creation and sharing of 2D sketches during workgroup
interaction [Gre91].

For the moment, there is no computer support for pre-
scriptive sketches in the sense of offering some extra func-
tionality with respect to plain paper sketching. This kind of
sketch can include complex graphic symbols such as those
represented by dimensions, geometric tolerances and sur-
face finishes. This introduces additional complexity in
order to create a computer aided sketching (CAS) applica-

2 Aleixos, Naya, Company and Contero/ Geometry and Gesture Recognizers for Prescriptive Sketch Interpretation

tion because more sophisticated recognizers are required.
So, a first step to create a CAS application to support pre-
scriptive sketches would be the automatic beautification,
then perhaps the automatic conversion into a parametric
2D drawing and finally the interpretation of the multiview
representations to create a 3D model from orthographic
projections.

In what follows we will present the ParSketch prototype
that is a CAS application than performs an online conver-
sion of a prescriptive sketch into a 2D parametric drawing.
Then, both the geometry and gesture recognizers used by
this application are described and analyzed

2. Related work

Several research works have been carried out in order to fit
a free sketch by the designer into an outlined sketch. Many
of them work in a similar way: when a stroke is introduced
they search for changes in direction to separate pieces of
the stroke and then, they approximate each stroke piece to
an intended shape.

For instance, Qin et al. [QWJ01] recognize freehand
sketches in a on-line system using features as curvature,
speed and acceleration graphs. They used the last two
graphs to smooth the sketched stroke to be processed for
segmentation. Then, searching sharp zones in the stroke
direction, corner points are marked and lastly, pieces of
stroke are approximated to lines or arc entities depending
on their circularity or straightness, determined by thresh-
olds.

Also Yu [Yu03] has developed an algorithm capable of
converting a freehand sketch into an outlined one, basing
the recognition process on the direction and curvature fea-
tures. Yu first smoothes the sketch using mean shift on
previous features, then searches for vertexes in curvature
graph and lastly approximates to geometric entities.

Other techniques are used in sketch recognition to de-
tect symbols, diagrams, geometric shapes and other user
command gestures. For instance Rubine [Rub91] classifies
sketches into different gestures or characters, basing the
recognition process on extracted features as ratios of area-
perimeter, initial angle of the sketch, the total angle trav-
erse, and so on.

Apte et al. [AK93] developed an algorithm for recog-
nizing hand drawn geometric shapes (rectangles, triangles,
circles, ellipses, diamonds and lines) from multistroke
sketches entered without pauses. They based the recogni-
tion on what they call filters, which are ratios from features
as area, perimeter, convex-hull, etc.

 Other works, as carried out by Calhoun et al.
[CSKK02], recognize multi-stroke symbols into its con-
stituent primitives using both pen speed and curvature fea-
tures. They use two methods: in the first one they train the
system introducing the symbols in a strict order and, on the
other one, they study a heuristic method based on relaxing
assumptions as the sequence order, the exact number of
primitives, and relative orientation, to allow the designer to
introduce the symbol in a different sequence order, what is
more expensive computationally.

Jorge et al. use percentiles for area and perimeter ratios
to detect shapes as circles, rectangles, triangles, lines, etc.
basing their recognition on fuzzy sets [PBJS*04].

Moreover recognizing known shapes and symbols, it is
necessary to interpret or recognize other user sketches as
gestures to convert them into CAD application commands.
Some symbol recognition has been done basing their rec-
ognition process on shape descriptors as perimeter, area,
ratios between them, etc. However, methods based on Fou-
rier descriptors achieve better results than methods based
on shape descriptors as used above. In this field, Zang et al.
[ZL02] test and compare different Fourier descriptors using
a standard shape database, and conclude that centroid dis-
tance is the best shape signature in terms of robustness,
computation complexity and convergence speed of its Fou-
rier series. Fourier descriptors were also used by Harding
et al. [HE04] for the recognition of hand gesture trajecto-
ries. Other examples of applications that use Fourier de-
scriptors are the detection of users’ hand movement in a
system to achieve an augmented reality tool (Licsar et al.
[LS04]) or OCR applications (Hopkins et al. [HA04]).

Park and Park [PP05] use Fourier transform to describe
fingerprints that are classified by means of a non-linear
discriminant analysis. Although the accuracy and robust-
ness of sketch recognising for symbols and gestures have
improved recently, there are still many issues involved in
real applications. Hong et al. [HLLM02] describe the
drawbacks of sketch recognisers at this time.

In this work, we present the RecoGeo geometric recog-
nizer that extracts from freehand sketches the geometric
primitives they are composed of. Later, these recognized
entities are parametrized.

Also in this work, we present the RecoGes gesture rec-
ognizer, which works on-line, to interpret user gestures as
dimensional/geometric constraints to parametrize the pre-
vious outlined sketch, or as commands to extrude, revolve
or edit the sketch. Both recognizers have been used in the
ParSketch application that is presented in the following
point.

3. The ParSketch application

ParSketch is a 2D sketching application that can interpret
complex strokes composed by different geometric entities
that are automatically segmented into its basic components
(line segments and arcs). Internally this application uses
the 2D DCM parametric engine from UGS’ D-Cubed to
provide parametric control of the shape.

Interaction with the application relies on two
recognizers as shown in Figure 1. RecoGeo is used for
geometry analysis and RecoGes for gesture interpretation.
They are invoked using the drawing pressure as a mode
discriminator (inking or gesturing).

Some of the gestures that the system supports at present
are included in table 1. It is possible to add new gestures to
the system as the gesture recognizer can be trained provid-
ing new gesture samples.

 Aleixos, Naya, Company and Contero/ Geometry and Gesture Recognizers for Prescriptive Sketch Interpretation 3

Figure 1: Block diagram of the ParSketch application

3.1 Calligraphic interface

The user introduces the geometry creating a freehand
sketch directly onto the screen of the Tablet-PC. The ge-
ometry recognizer provides the defining parameters that
control the geometric entities found in the sketch. After a
preprocessing stage that cleans up input data and adjusts
edges to make sure they meet precisely at common end-
points in order to get geometrically consistent figures, the
application by means of the 2D DCM application provides
a perfect line drawing showing all the detected geometric
constraints.

Users can delete unwanted geometric constraints draw-
ing a scratching gesture over them. They can also add new
constraints drawing their associated gestures near the geo-
metric entities where they must be applied.

Constraints are managed by the dialog box presented in
Figure 2. The user can choose the constraints that the sys-
tem will automatically use to control the sketch. Users can
also manage the beautification action modifying the toler-
ance values used to decide if a geometric constraint is veri-
fied. Handwritten number recognition is provided by the
Windows XP Tablet PC Edition operative system.

Figure 2: Tolerance settings

ParSketch application offers some innovative ways of con-
trolling the shape after it has been analyzed by the Reco-
Geo engine and a beautified constrained model is presented
to the user. In Figure 3 we present an example of dimen-
sional control using the dimension gesture. It operates in
two stages. When it is introduced by the user, the system
interprets it as a measure command, providing the text
dimension automatically. This can be seen in Figure 3.b.
Then, if the user writes something near the dimension text
it is interpreted as a new value for the dimension. This
value is fed in the 2D DCM parametric engine and an up-
dated shape is presented to the user.

Comparing the operation of the ParSketch system with a
standard WIMP parametric 2D CAD application we can
say that the basic functionality is practically equivalent.
The main advantage of ParSketch is related to its ability to
interpret complex compound strokes that include several
geometric entities. This makes the input of geometry very
agile requiring less interaction with the user than with a
WIMP interface, where each kind of geometry entities
must be explicitly indicated to the system using the proper
menu or icon.

 a) b)

 c) d)

Figure 3: ParSketch sketching sequence

4. Geometry recognizer

In order to recognize geometric entities from freehand
sketches, we have developed a geometry recognizer that
we call RecoGeo, whose structure is presented in Figure 4.
This algorithm analyzes a stroke when a pen up event is
encountered, and fits a sketch into an outlined sketch
(poly-line). The procedure consists of five steps:
1. Direction and curvature signatures of the stroke are

calculated.
2. The mean shift procedure is used to smooth the two

former signatures, in order to avoid shaky writing.
3. Then, changes in direction of strokes are detected by

the algorithm, and vertexes are detected using peaks
in curvature signature.

4. A refinement of vertexes (reduction of the number of
vertexes found) is carried out when their path length is
less than a desired threshold, fixed empirically.

5. Finally, the type of each entity between two pair of
vertexes is decided by means of a primitive approxi-

4 Aleixos, Naya, Company and Contero/ Geometry and Gesture Recognizers for Prescriptive Sketch Interpretation

mation method. Supported entities are lines, arcs, cir-
cles and ellipses, and its type is decided by looking
into the direction signature, and analyzing the points
corresponding to that piece of the stroke.

Extraction of
direction and

curvature features

Smoothing of
direction and

curvature
signatures

Vertex detection

Calculate linear
regresion of stroke

points

Calculate slope in
direction signature

User input
 on a Tablet PC

End for

For each stroke
points between

two vertex

Calculate contour
features: diameters,

centroid, elongation, ...

Circle entity is
approximated

Primitive approximation method

If (linear regresion >
threshold) and (slope

= horizontal)

Line entity is
approximated

If (dist. between
 two vertex <threshold

 distance)

If (elongation <
threshold)

Arc entity is
approximated

Ellipse entity is
approximated

Figure 4: Geometry recognition flowchart

4.1 Extraction of direction and curvature signatures

The stroke is composed by a set of coordinates (x,y) in an
interval of pen-down and pen-up events. In such a stroke,
there are two visual features which can guide recognition:
direction and curvature. The direction gives the angles
between two consecutive pairs of coordinates in the range
[-π, π]. The curvature gives the arctangent of the direction
between two consecutive points, to inform on how opened
or closed such piece of the stroke is.

Direction can be defined as:
12

)1,(

+

+
=
∑
+

−=

k

ii
d

kn

kni
n

θ
 (1)

And curvature as:
),(

),(
1

1

knknP

dd
c

kn

kni
ii

n +−
=
∑

−+

−=
+φ

 (2)

In these equations, n is defined as the number of stroke
points, k is the neighbourhood size around the n-th stroke
point, P is the path length of the current stroke point and its
neighbourhood size (in our case we assume k=1 as the
neighbourhood size of any stroke point), θ is the angle
between two consecutive stroke points shifted in the range
[-π, π], and φ is the arctangent of the angles of three con-
secutive points.

4.2 Smoothing the sketch

We have used the mean shift procedure to smooth the col-
lected stroke, since it has proven to give good results in
analyzing clusters in feature space, and in eliminating
noise. The mean shift procedure [Yu03] can be defined as:

,...2,1,

'

'

1

2

1

2

1 =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

=

∑

∑

=

=

+ j

h
xz

k

h
xz

kx

z
n

i

ij

n

i

ij
i

j (3)

In order to apply this procedure to the two-dimensional
direction-curvature joint space, we will consider xi,
i=1,2…n as the input vector of the mean shift procedure,
that is, the joint space di and ci; and zi, i=1,2…n as the
output vector of smoothed discrete values of direction and
curvature, that is, the new direction and curvature signa-
tures after smoothing. The term h is the “bandwidth”, that
is, the smoothing parameter, which has been adjusted to hd
and hc, depending on direction and curvature respectively.
In such a way we have the following:

1

)(
1

1
1

2

−

−
=
∑
−

=
+

n

dd
h

n

i
ii

d

φ

1

)(
1

1

2
1

−

−
=
∑
−

=
+

n

cc
h

n

i
ii

c (4)

Regarding to the direction-curvature joint space, we have
that mean shift vector is:

∑

∑

=

=

+

+
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

i c

ij

d

ij

n

i c

ij

d

ij
i

j

j
j

h
cc

h
dd

h
cc

h
dd

x

c
d

y

1
2

2

2

2

1
2

2

2

2

1

1
1

2
)(

exp.
2

)(
exp

2
)(

exp.
2

)(
exp. (5)

The algorithm remains as follows:

− Initialize the first vector result yr,1 with the maximum
values of direction and curvature xr, r=1,2…n (that is
di and ci).

− Compute yr,s+1 iteratively according to (5) procedure
for each stroke point until convergence, where the cri-
terion for convergence is set to

100,1, dsrsr hdd ≤−+ for direction and to

100,1, csrsr hcc ≤−+ for curvature.

− Assign each output convergent vector to zr, r=1,2…n,
so it contains smoothed direction and curvature signa-
tures.

4.3 Finding vertexes

The smoothed curvature signature guides us to find ver-
texes in the stroke when seeking for local maxima values,
that is, where curvature changes considerably (peaks in
curvature signature). For this purpose, the designed algo-
rithm to decide the location of vertexes in the stroke is:

 Aleixos, Naya, Company and Contero/ Geometry and Gesture Recognizers for Prescriptive Sketch Interpretation 5

a) Freehand sketch
composed of 1 arc
and 4 lines (in this
order).

b) Direction (up) and
curvature (down)
signatures. The circles
are the zones of the
direction signature
that are analyzed to
help us to decide if it
is an arc or a line.

c) Direction (up) and
curvature (down)
signatures after
smoothing with mean
shift.

Figure 5: An example of stroke (a); its corresponding
direction and curvature signatures (b); and the smoothed
former signatures (c)

− Scan each stroke point and mark the ones as a vertex
if its curvature is a local maximum or minimum, and
the condition:

ciiii hcccc 211 ≥−+− +− is accomplished.

Where the i-th point is the current stroke point and hc
is the smoothing parameter for curvature.

− Finish the vertexes seek, merging two consecutive
vertexes when the path length between them is lower
than a threshold.

Refinement of vertexes is necessary because, otherwise,
small entities would be found, which are very common in
freehand sketches. After refinement, in the example of
Figure 6, one line, one arc and one line respectively are
found, instead of two lines at the end.

Figure 6: Merging two consecutive vertexes

In the example of Figure 7 our algorithm finds six vertexes
and detects the first entity as an arc and the following enti-
ties as lines. This has been achieved studying both, the
original direction signature before mean shift procedure
between each two consecutive vertexes, and the correlation
with the linear regression of the stroke points of each en-
tity. In the next section, we will explain the primitive ap-

proximation method implemented by our recognizer, to
decide among line, arc, circle and ellipse.

The recognition algorithm provides the distinctive ele-
ments of any entity of the outlined sketch. For a line, the
these are the two end points, for an arc they are the centre
point and the two end points, for a circle they are the centre
and a radius and for an ellipse they are the two axes and
their orientation..

Figure 7: Geometric recognition for sketch of Figure 5

4.4 Primitive Approximation Method

We use two basic features to approximate the pieces of
stroke to primitive entities: the original direction signature
and the correlation of the stroke points from their linear
regression. Next we explain the method applied to the dif-
ferent entities that our algorithm is able to distinguish.
LINE ENTITY.
Our analysis begins supposing that we have a line entity
and, if recognition fails, then we check for other entities.

Secondly, when analyzing the stroke points, we can ap-
preciate its curvature also looking into the morphology of
the original direction graph. If the slope is found to be
horizontal (value of slope <= 0,01), the portion of the
stroke between the corresponding two vertexes will be
approximated to a line, otherwise (value of slope > 0,01),
we will check if it is an arc, circle or ellipse.

M

Vi

Vi+1
Intersection
point

α+π/2

α

s

r C
Figure 8: Fitting a piece of sketch to an arc entity

ARC ENTITY.
The algorithm to find an arc consists of checking first the
proximity of the two vertexes of the stroke piece, consider-
ing they are far enough from each other to start primitive
approximation. In this case, we compute the perpendicular
line s to that one formed by the two vertexes, and force it
to pass through the midpoint between those vertexes, as
explained in Figure 8.

6 Aleixos, Naya, Company and Contero/ Geometry and Gesture Recognizers for Prescriptive Sketch Interpretation

Once we have s, we scan the stroke points between the
two vertexes and keep the one belonging to that line, that
is, the intersection point. Now, we are provided with three
points that define a circle, of which we will keep just the
arc segment containing the three points, and we are already
able to calculate its radius. The arc then will be computed
as the arc segment of a circle through three points, with its
radius r and centre C.
CIRCLE AND ELLIPSE ENTITIES
If the former possibilities to be a line or an arc are rejected,
we must check for a circle or an ellipse approximation.
When this happens, an algorithm based on following con-
tour techniques is applied, extracting several features to
decide whether to be a circle or an ellipse and to compute
the parameters of the shape (the stroke piece). These fea-
tures are:

− The centroid of the shape C .
− The orientation of the shape α (useful for ellipses),

that will be the orientation of maximum diameter.
− The maximum diameter (radius R) with α orientation

and minimum diameter (radius r) passing through the
centroid C.

− Elongation (maximum diameter divided by minimum
diameter).

− The intersection point I of the stroke with the maxi-
mum diameter (useful for ellipses).

Once all these features have been calculated, we base our
decision on the entity type in the elongation feature. This
feature results of dividing the two calculated radius. When
elongation remains between a threshold interval (set em-
pirically to 0,8 <= elongation <= 1,2), the entity will be
interpreted as a circle, otherwise as an ellipse. In Figure 9
results obtained for a shape approximated by an oriented
ellipse are shown.

Vi
Vi+1

I

α+π/2
α

r

C

R

Figure 9: Parameters of a circle/ellipse primitive

4.5 Evaluation and discussion

Our recognizer takes a single stroke as input. The samples
used to evaluate the geometric recognizer were shapes
composed of solely lines, solely arcs, and lines and arcs as
shown in figure 10, where the dots represent the stroke
points sampled on a Tablet PC, and the little squares are
the vertexes found after recognition. For approximated
lines, a black straight line are painted between two vertexes
and, for arcs, the centre is marked with a cross sign and the

three radius are painted from centre to the two endpoints of
the arc, and to a third point on arc placed near the middle

Results in figure 10 show approximated polylines that
suit the sketchy form pretty well. However, there are
examples in which recognition does not match the sketch
as it was intended. For instance, the sketchy form of figure
10(a) approximates two arcs instead of just one arc. This is
because a vertex has been found and, although both radi-
uses are quite similar, they are not concentric. Also, when
changes in stroke direction are not sharp enough the results
are not the intended primitives.

We can appreciate that when arcs are sketched not con-
vex enough, they are approximated by more than one arc,
because vertex detection finds significant peaks in curva-
ture as shows figure 11(a, b). Also different parts of an
intended arc can be approximated to a line and an arc, as
shows figure 11(b). Notice the recognition result for figure
11(f) corresponding to a number “2”. The difference is that
in the left shape, the upper part is more convex, and the
softness in sketching makes that just one vertex is found,
so just one arc is approximated.

Better results can be obtained by improving the beauti-
fication of the sketch, which will rebound in the vertex
detection algorithm. A final refinement can also be carried
out to remove extremely short approximated entities (lines
or arcs) checking neighbour entities.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 10: Sample of shapes used for evaluation

 Aleixos, Naya, Company and Contero/ Geometry and Gesture Recognizers for Prescriptive Sketch Interpretation 7

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11: Other samples for evaluation. Recognition
results are in black and the sketch in red.

5. Gesture recognizer

A gesture recognizer has been designed for interpreting
gestures sketched by the user as dimensional-geometric
constrains and commands. The application distinguishes
gestures from geometry, analyzing the pressure that the
user makes with the stylus on the LCD screen.

The algorithm consists of four steps. In the first step, we
use pre-processing image analysis techniques to smooth
and remove noise from the sketched gesture. In the second
step, the size of the sketched gesture is normalized to pro-
vide the same concentration of digitized points throughout
the gesture. Then, two signatures of the shape of the ges-
ture are calculated: 1) as the distance of each point from
the gesture centroid and 2) as changes in the direction of
consecutive points. First signature is called the polar signa-
ture, and second one is called the direction signature. In
the third step, we apply the fast Fourier transform (FFT) to
the spectrum domain of the previous two signatures. Fou-
rier descriptors are used due to their properties of being
scale-rotation invariant. As a final step, a standard non-
linear discriminant analysis is used to classify the gestures
by attending to Fourier descriptors of digital signatures.

Several gestures of the alphabet used in our sketching
application are shown in table 1. These gestures can be
composed of several strokes, where each stroke is a set of
points that are digitized by the device between pen-down
and pen-up events. The last stroke for a gesture occurs
when a timeout is reached from the last pen-up event. An
example of multistroke gestures is presented in Figure 12
where for the diametral dimension and the parallel con-
strain are presented with their corresponding signatures.

Constraint
gestures

Class Command
gestures

Class

Concentric

Extrusion

Dimension

Revolve-
right

Diametral
dimension

Revolve-
left

Parallel Cross-out
(erase)

Table 1. Some supported gestures

Note that the size of any part of the stroke has equal length.
This is due to the normalization of each stroke of the ges-
ture. This beautification of the sketch contributes to make
the method used to recognize gestures to be scale invariant.

Dimension line
stroke

Left arrow
stroke

Right arrow
stroke

Figure 12: Diametral dimension and parallel gestures
with its polar (red) and direction (blue) signatures.

The FFT of the normalised polar and direction signatures
are calculated independently, using the resulting harmonics
as variables of the classification function of the discrimi-
nant analysis. The averaged success ratio for the classifica-
tion was 91.8%, which is a good result in an on-line appli-
cation. When the result of classification has a probability
less than a threshold (as the level of confidence) the user is
asked to sketch the gesture again, what increases the suc-
cess ratio to an average of 95%.

8 Aleixos, Naya, Company and Contero/ Geometry and Gesture Recognizers for Prescriptive Sketch Interpretation

6. Conclusions

A robust algorithm to approximate hand sketches into its
constituent primitives has been developed for an on-line
system. Different tests demonstrated that the obtained out-
lined sketch is practically the intended geometry by the
designer. Future improvements are expected from applying
a previous smoothing of the sketch by morphological op-
erations in order to optimize the vertexes search or a re-
finement of the final outlined sketch in order to simplify
geometry.

A new algorithm to recognize multistroke gestures has
been proposed. It is based on the shape description of the
gestures using polar and direction signatures, analyzed by
means of the fast Fourier transform (with rotation-scale
invariant properties), whose descriptors were used as inde-
pendent variables to perform the classification using non-
linear discriminate analysis. Classification functions ob-
tained were used during the process off-line to train the
system. Such characteristic will allow extending the sup-
ported gesture alphabet or tailoring the recognizer behavior
to a specific user’s way of sketching. The averaged success
ratio obtained from tests with different CAD and non CAD
users was 91.8%, what is a good result in an application
on-line, and increases to an average of nearly 95% when a
level of confidence is used.

Both recognizers work pretty well in a sketch-based en-
vironment, and results seem to be relevant in the context
we are working. The ongoing work presented in this paper
demonstrates that both methods work well in an on-line
application, solving major problems inherent to sketch
drawing and allowing the operation in real time.

Acknowledgments

This work was partially funded by Fundació Caixa Cas-
telló-Bancaixa through project P1-1B2004-02, “Gestual
Interface for Parametric-variational Sketches, and for Defi-
nition of Assembly Conditions in Aided Design of Manu-
factured Products”. Besides, the Spanish Ministry of Sci-
ence and Education and the European Union, through the
SAMBODIC project (Ref. DPI2004-01373) partially sup-
ported this work

References

[Van05] VAN DER LUGT R.: How sketching can affect the
idea generation process in design group meetings. Design
Studies 26, 2 (2005), 101–122.

[Fer92] FERGUSON E.S.: Engineering and the Mind's Eye.
MIT Press, 1992

[CNJC03] CONTERO M., NAYA F. , JORGE J., CONESA J.:
CIGRO: a minimal instruc-tion set calligraphic interface
for sketch-based modeling. Lecture Notes in Computer
Science. 2669 (2003), 549–558.

[ZHH96] ZELEZNIK, R.C., HERNDON, K.P., HUGHES, J. F.:
SKETCH: an interface for sketching 3D scenes. In Proc.
SIGGRAPH '96 (1996), pp. 163–170.

[Gre91] GREENBERG S.: GroupSketch: a multi-user sketch-
pad for geographically-distributed small groups. In Proc.
Graphics Interface ’91 (1991), pp. 207–215.

[Yu03] YU, B.: Recognition of freehand sketches using
mean shift. In Proc. of IUI '03. (2003), pp. 204–210.

[QWJ01] QIN S-F., WRIGHT D.K., JORDANOV I.N.: On-line
segmentation of freehand sketches by knowledge-based
nonlinear thresholding operations. Pattern Recognition
34 (2001) 1885–1893.

[Rub91] RUBINE D.: Specifying Gestures by Example. In
Proc. Of SIGGRAPH '91 (1991), pp. 329–337.

[AK] APTE A., KIMURA V.V.: Recognizing multistroke
geometric shapes: an experimental evaluation. In Proc. of
ACM UIST’93, (1993), pp. 121–128.

[CSKK02] CALHOUN C., STAHOVICH T.F., KURTOGLU T.,
KARA L.B.: Recognizing Multi-Stroke Symbols. In Proc.
of AAAI Spring Symposium on Sketch Understanding
(2002) pp.s 15–23.

[PBJS*04] PEREIRA J. P., BRANCO V. A., JORGE J. A., SILVA
N. F., CARDOSO T. D., FERREIRA F. N.: Cascading recog-
nizers for ambiguous calligraphic interaction. In Proc. of
the Eurographics Workshop on Sketch-Based Modeling
(SBM'04) (2004), pp. 63–72.

[ZL02] ZANG D., LU G.: A comparative study of fourier
descriptors for shape representation and retrieval. In
Proc. of the 5th Asian Conference on Computer Vision,
Melbourne, Australia, ACCV’02 (2002) pp. 1–6.

[HE04] HARDING P.R.G., ELLIS T.J.: Recognizing hand
gesture using fourier descriptors. In Proceedings of the
17th International Conference on Pattern Recognition
(2004), vol. 3, pp. 286–289.

[LS04] LICSAR A., SZIRANYI T.: Hand gesture recognition
in camera-projector system. Lecture Notes in Computer
Science 3058 (2004), 83–93.

[HA04] HOPKINS J., ANDERSEN T.: A Fourier descriptor
based character recognition engine implemented under
the Gamera open-source document processing frame-
work. In Proceedings of the SPIE (2004) vol. 5676, pp.
111–118.

[PP05] PARK C.H., PARK H.: Fingerprint classification us-
ing fast Fourier transform and non-linear discriminant
analysis, Pattern Recognition 38 (2005) 495–503.

[HLLM02] HONG J., LANDAY J., LONG A.C., MANKOFF J.:
Sketch recognizers from the end-user’s, the designer’s,
and the programmer’s perspective. Sketch Understand-
ing, Papers from the 2002 AAAI Spring Symposium.
(2002) pp. 73–77.

