
© Regeo. Geometric Reconstruction Group

www.regeo.uji.es

Technical Reports. Ref. 04/2009

An Implementation of Dijkstra’s Algorithm for
Finding Faces in Wireframes

Peter A.C. Varley

Department of Mechanical Engineering and Construction, Universitat Jaume I, Spain

Abstract
This Technical Note describes a method of finding faces in wireframes based around Dijkstra’s Algorithm. It in-
cludes minor improvements over similar methods used by Varley and Shesh and Chen, amongst others.

Index Terms: Wireframe, Face Identification, Line-Drawing Interpretation, Visual Perception

1. Introduction

This Technical Note describes a method of finding faces in
wireframes based around Dijkstra’s Algorithm. It includes
minor improvements over similar methods used by Varley
(2000 and 2003) and Shesh and Chen (2004), amongst
others.

Our input data is partly topological (a undirected graph
G(V,E)) and partly geometric ((x,y) coordinates for each
vertex of the graph). The graph is subject to the restrictions
(i) that no edge connects a vertex to itself and (ii) no two
edges join the same two vertices.

Formally, the problem to be addressed is best expressed
in terms of half-edges, where a half-edge is an arrow of the
directed graph G’(V,A) which contains arrows {a,b} and
{b,a} if and only if the original undirected graph G(V,E)
contains the edge {a,b}.

A cycle is a closed path of half-edges.
The first objective is to obtain a set of cycles in which

each half-edge is included in exactly one cycle.
Additionally, a topology must be geometrically realisable:
it must be possible to select vertex z-coordinates such that
each cycle is planar (in practice, it is necessary to specify
“planar within a tolerance” rather than “exactly planar”).

Where only one valid set of cycles exists, the objective
is simply to find it. Where more than one valid set of
cycles exists, the objective is to find the one which
matches the interpretation of the drawing which a human
interpreter would consider to be the most plausible.

It is assumed that at least one valid set of cycles exists.
The related but distinct problem of determining whether or
not any valid set of cycles exists is not addressed here.

2. Improvements

The implementation described here incorporates the fol-
lowing two improvements over previously-published ap-
proaches.

2.1 Detection of Non-Planar Face Loops

Figure 11: Face Loops: Wrong and Right Choices

The “wrong” choice can occur using the approaches of
Varley (2000) and Shesh and Chen (2004), both of which
set the “path length” (the cost of traversing a particular
edge) to 1. One way of ensuring that the “right” choice is
made is to use the path length as a measure of how badly a
particular edge fits the rest of the loop of edges; this was
suggested in Varley (2003) and is the approach adopted
here. See Section 3.4

2 Varley P.A.C./ An Implementation of Dijkstra’s Algorithm for Finding Faces in Wireframes

2.2 Detection of Non-Planar Face Loops

Figure 2: Internal Faces

Varley (2000 and 2003) does not contain any explicit
method for avoiding internal faces, but generally does not
suffer from this problem as visible face loops have already
been identified by a previous process. Shesh and Chen
(2004) does not contain any explicit method for avoiding
internal faces either.

This technical note introduces a method of avoiding
faces based on choosing an appropriate starting-point for
face loop detection. This is described in Section 3.3.

3. Pseudocode

The problem to be solved can be stated as: find the set of
loops of half-edges which corresponds to the set of external
faces, while avoiding the pitfalls described in Section 2;
each edge has two half-edges which are traversed in oppo-
site directions, each half-edge must appear in exactly one
loop, and the two half-edges of any edge must not appear
in the same loop. The approach used here is similar to that
presented in [36], with the difference that in that work (a)
the algorithm used an inflated wireframe, not 2D data, and
(b) the algorithm started with some face loops already
known, whereas here it is used to identify all face loops.

Note that the overall control structure (Section 3.1) and
Dijkstra’s Algorithm (Section 3.2) are purely topological.
When we wish to make use of geometric information, we
must use the algorithm’s externals, its starting point
(Section 3.3) and the cost function (Section 3.4).

Note also that the algorithm does not know (or care!)
whether it is determining clockwise or anticlockwise face
loops, although it does ensure that the same choice is made
for all faces in the same subgraph. Neither does it detect
geometric problems such as self-intersection.

We assume that the drawings are in parallel projection.
The algorithm presented here could be used for other
projections by changing the cost function (Section 3.4).

3.1 Overall Algorithm

Essentially, this approach uses repeated application of
Dijkstra's Algorithm (1959) for finding loops in an undi-

rected graph. We should also take advantage of particular
face types, as discussed next, and avoid two particular
pitfalls, creation of internal faces (see 4.1.3) and choosing
the wrong path (see 4.1.4).

Triangular loops of edges can be treated as a special
case. Although, of necessity, all triangular loops of edges
are planar, not all are true faces, since some could be
internal faces. It is simple to prove that any triangular loop
of edges containing at least one trihedral vertex must be a
true (external) face. Triangular loops of edges containing
no trihedral vertices may, but need not necessarily, also be
external faces.

A good case could also be made for treating
quadrilateral loops of edges where at least one of the pair
of opposite edges appears to be parallel as a special case.
Unlike triangular loops, there is no criterion which means
that these must be faces, but even so they quite often are.
Determination of what is, and what is not, a pair of parallel
edges is beyond the scope of this paper.

The resulting algorithm is:

Determine the subgraphs, allocating each edge to a
subgraph

For each subgraph
(Preliminaries)

List those triangular loops which must
necessarily correspond to faces
List those quadrilateral loops in which at least
one pair of opposed edges appears to be parallel
(see 3.4)
Mark each half-edge (forward and reverse for
each edge) as unallocated
(Find the faces)
While there are half-edges not allocated to a face

If any listed triangular loop includes an
edge which has only one unallocated half-
edge

Create the corresponding triangular
face
Mark the three half-edges as allocated
Remove the triangular loop from the list

Otherwise
Choose a starting edge, as described
in 3.3
Create the face, using Dijkstra's
Algorithm, as described in 3.2

3.2 Finding a Face

The algorithm for finding one face is:

Given a suitable half-edge (see 4.1.3)
(Preliminaries)

 Varley P.A.C./ An Implementation of Dijkstra’s Algorithm for Finding Faces in Wireframes 3

The starting point is the end of the chosen half-edge
The target is the start of the chosen half-edge
Set Cost Known to True for the starting point and
False for all other vertices
Set Cost to Zero for the starting point and Unknown
for all other vertices
Set Branched from Here to True for the starting point
Set Branched from Here to False for all other vertices
Set Route for the starting point to the target
Set Route for all other vertices to Unknown
For each valid (see note below) vertex V which can
be reached from the starting point via an unallocated
half-edge

Set Cost Known for V to True, Cost for V to 1,
and Route for V to the starting point

(Find the Face)
While Cost Known for the target is False

Choose the Current Branching Point: from the
set of vertices for which Cost Known is True and
Branched from Here is False, choose the one
with the smallest Cost
For each valid vertex V which can be reached
from the Current Branching Point via an
unallocated half-edge:

Calculate the cost of traversing this half-edge
(see 4.1.4)
Calculate the total cost for reaching V by this
route as Cost of Current Branching Point plus
the cost of traversing this half-edge
If Cost Known for V is False or if the total
cost of reaching V by this route is less than
the current Cost of V

Set Cost Known for V to True, set Cost
for V to the total cost of reaching V by
this route, and set Route for V to
Current Branching Point

Set Branched from Here for Current Branching
Point to True

(Postprocessing)
Find the loop of vertices by recursively retracing
Route, starting at the target and working back
Mark the half-edges used to form this loop as
allocated

Note: a vertex is valid (in the algorithm above) if

including it in the current loop will not result in any three
consecutive vertices being traversed in this loop which
have already been traversed together in any preceding

completed face loop. This ensures that we do not identify
the two orientations (clockwise and anticlockwise) of a
face loop as separate face loops.

3.3 Avoiding Internal Faces

Dijkstra’s Algorithm allows us control of two variables:
choice of starting point and choice of cost function. Since
our most pressing problem is to avoid internal faces, we
use our ability to choose the starting-point in such a man-
ner as to ensure that the algorithm preferentially finds true,
external faces.

Consider the left-hand drawing in Fig. 1. In which order
do we want to determine face loops? It would be best to
start with an edge which is demonstrably convex in 3D: all
other edges lie on the same side of a plane through this
edge (a line in 2D is demonstrably convex in 3D if all other
lines lie on the same side of the (extended) line).

Perhaps we start with the top face, since this is all
trihedral. We follow this with the four faces which border
it, since we can ensure that these will be in the same
orientation (clockwise or anticlockwise) as the initial face.

But which face should we follow next? We do not want
to start at an edge joining the non-trihedral vertices, as that
could lead us to follow an internal face. However, starting
at an edge on the bottom face can also lead to a problem:
since this is isolated from the faces we have already
determined, there is no guarantee that we will follow it in
the same orientation (clockwise or anticlockwise). What
we want to do is start with one of the edges joining a
partially-used non-trihedral vertex to an unused trihedral
vertex.

Accordingly the priority order for choosing starting
edges is:

1. the remaining half-edge of any edge joining two
trihedral vertices, both of which have already
been used in one or more faces,

2. a half-edge of any edge joining two trihedral
vertices, one of which has already been used in
one or more faces,

3. a half-edge of any edge joining a trihedral vertex
which has already been used in one or more faces
to any vertex,

4. a half-edge of any edge joining a trihedral vertex
to any vertex which has already been used in one
or more faces,

5. a half-edge of any convex boundary edge joining
two trihedral vertices,

6. a half-edge of any other edge joining two
trihedral vertices.

Within each category, edges which are included in
triangular loops which necessarily correspond to faces are
to be preferred to those which are not, and edges which are
included in quadrilateral loops which plausibly correspond
to faces are to be preferred to those which are not.

4 Varley P.A.C./ An Implementation of Dijkstra’s Algorithm for Finding Faces in Wireframes

3.4 Choosing the Right Path: Cost Function

Dijkstra’s Algorithm assigns a cost, also termed the path
length, for traversing each edge. Since geometry is conti-
nuous and path length is the only non-integer quantity in
Dijkstra's algorithm, we use the cost to reflect the require-
ment that each face loop should be planar. For our purpos-
es, we wish the cost to be small if the edge is close to being
coplanar with the path taken to it, and large if the edge is
far from coplanar with the path taken to it.

Varley (2003) showed that with an inflated wireframe,
choosing the wrong path can be normally avoided by
sensible choice of cost function. To test whether it is
possible to do this for 2D wireframes too, we make use the
idea that face loops should preferably comprise two groups
of parallel lines.

It is worth noting that the only difference between the
2D and 3D versions of this algorithm is that they use
different cost functions.

We calculate the cost of traversing an edge as
cost=ε+(1/max(ε,Merit))-1. Merit, in the range 0–1, varies
depending on whether we are working in 2D, before
inflation (see 4.1.4.1) or in 3D, after inflation (see 4.1.4.2).
ε is a small value (we use ε= 10-6) included to ensure that
the cost is always finite and positive.

3.4.1 2D Path Length Function

We calculate the path length function for working in 2D as
follows:

Let D = vertex under consideration
Let C = known vertex prior to D
Let B = known vertex prior to C
Let A = known vertex prior to B
While AB and BC are collinear

Let B = known vertex prior to C
Let A = known vertex prior to B

If A is not a known vertex, merit is 0.5 (to make the cost of
edge CD = 1)

Merit is the higher of (cos α)k and (cos β)k where α is
the angle between AB and CD, β is the angle between BC
and CD, and k is an arbitrary constant.

For historical reasons, we use k=10.

3.4.2 3D Path Length Function

The function which we use to determine how close two
lines are to being parallel is (â·û)k , where â is a normalised
vector in the directions of the edge under consideration, û
is the closest normalised vector to in the plane of the pre-
vious vertices on the path to this edge (calculated as
û=(â×ô)×â, where ô is a normal to the plane) and k is an
arbitrary even integer constant. For historical reasons, we
use k=10.

References

[1] E.W. Dijkstra, 1959. A Note on Two Problems in
Connexion with Graphs, Numerische Mathematik I,
269–271.

[2] A. Shesh and B. Chen, 2004. SMARTPAPER: An
Interactive and User Friendly Sketching System,
Computer Graphics Forum 12(3), 301–310.

[3] P.A.C. Varley and R.R. Martin, 2000. Constructing
Boundary Representation Solid Models from a Two-
Dimensional Sketch: Topology of Hidden Parts, Proc.
First UK-Korea Workshop on Geometric Modeling
and Computer Graphics, 129–144. Kyung Moon
Publishers.

[4] P.A.C. Varley, 2003. Automatic Creation of
Boundary-Representation Models from Single Line
Drawings, PhD Thesis, University of Wales.

