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Abstract 
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1. Introduction 

This Technical Note describes a method of finding faces in 
wireframes based around Dijkstra’s Algorithm. It includes 
minor improvements over similar methods used by Varley 
(2000 and 2003) and Shesh and Chen (2004), amongst 
others. 

Our input data is partly topological (a undirected graph 
G(V,E)) and partly geometric ((x,y) coordinates for each 
vertex of the graph). The graph is subject to the restrictions 
(i) that no edge connects a vertex to itself and (ii) no two 
edges join the same two vertices. 

Formally, the problem to be addressed is best expressed 
in terms of half-edges, where a half-edge is an arrow of the 
directed graph G’(V,A) which contains arrows {a,b} and 
{b,a} if and only if the original undirected graph G(V,E) 
contains the edge {a,b}. 

A cycle is a closed path of half-edges. 
The first objective is to obtain a set of cycles in which 

each half-edge is included in exactly one cycle. 
Additionally, a topology must be geometrically realisable: 
it must be possible to select vertex z-coordinates such that 
each cycle is planar (in practice, it is necessary to specify 
“planar within a tolerance” rather than “exactly planar”). 

Where only one valid set of cycles exists, the objective 
is simply to find it. Where more than one valid set of 
cycles exists, the objective is to find the one which 
matches the interpretation of the drawing which a human 
interpreter would consider to be the most plausible. 

It is assumed that at least one valid set of cycles exists. 
The related but distinct problem of determining whether or 
not any valid set of cycles exists is not addressed here. 

2. Improvements 

The implementation described here incorporates the fol-
lowing two improvements over previously-published ap-
proaches.  

2.1 Detection of Non-Planar Face Loops 

   
Figure 11: Face Loops: Wrong and Right Choices 

The “wrong” choice can occur using the approaches of 
Varley (2000) and Shesh and Chen (2004), both of which 
set the “path length” (the cost of traversing a particular 
edge) to 1. One way of ensuring that the “right” choice is 
made is to use the path length as a measure of how badly a 
particular edge fits the rest of the loop of edges; this was 
suggested in Varley (2003) and is the approach adopted 
here. See Section 3.4 
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2.2 Detection of Non-Planar Face Loops 

  

Figure 2: Internal Faces 

Varley (2000 and 2003) does not contain any explicit 
method for avoiding internal faces, but generally does not 
suffer from this problem as visible face loops have already 
been identified by a previous process. Shesh and Chen 
(2004) does not contain any explicit method for avoiding 
internal faces either. 

This technical note introduces a method of avoiding 
faces based on choosing an appropriate starting-point for 
face loop detection. This is described in Section 3.3. 

3. Pseudocode 

The problem to be solved can be stated as: find the set of 
loops of half-edges which corresponds to the set of external 
faces, while avoiding the pitfalls described in Section 2; 
each edge has two half-edges which are traversed in oppo-
site directions, each half-edge must appear in exactly one 
loop, and the two half-edges of any edge must not appear 
in the same loop. The approach used here is similar to that 
presented in [36], with the difference that in that work (a) 
the algorithm used an inflated wireframe, not 2D data, and 
(b) the algorithm started with some face loops already 
known, whereas here it is used to identify all face loops. 

Note that the overall control structure (Section 3.1) and 
Dijkstra’s Algorithm (Section 3.2) are purely topological. 
When we wish to make use of geometric information, we 
must use the algorithm’s externals, its starting point 
(Section 3.3) and the cost function (Section 3.4). 

Note also that the algorithm does not know (or care!) 
whether it is determining clockwise or anticlockwise face 
loops, although it does ensure that the same choice is made 
for all faces in the same subgraph. Neither does it detect 
geometric problems such as self-intersection. 

We assume that the drawings are in parallel projection. 
The algorithm presented here could be used for other 
projections by changing the cost function (Section 3.4). 

 

3.1 Overall Algorithm 

Essentially, this approach uses repeated application of 
Dijkstra's Algorithm (1959) for finding loops in an undi-

rected graph. We should also take advantage of particular 
face types, as discussed next, and avoid two particular 
pitfalls, creation of internal faces (see 4.1.3) and choosing 
the wrong path (see 4.1.4). 

Triangular loops of edges can be treated as a special 
case. Although, of necessity, all triangular loops of edges 
are planar, not all are true faces, since some could be 
internal faces. It is simple to prove that any triangular loop 
of edges containing at least one trihedral vertex must be a 
true (external) face. Triangular loops of edges containing 
no trihedral vertices may, but need not necessarily, also be 
external faces. 

A good case could also be made for treating 
quadrilateral loops of edges where at least one of the pair 
of opposite edges appears to be parallel as a special case. 
Unlike triangular loops, there is no criterion which means 
that these must be faces, but even so they quite often are. 
Determination of what is, and what is not, a pair of parallel 
edges is beyond the scope of this paper. 

The resulting algorithm is: 

Determine the subgraphs, allocating each edge to a 
subgraph 

For each subgraph 
(Preliminaries) 

List those triangular loops which must 
necessarily correspond to faces 
List those quadrilateral loops in which at least 
one pair of opposed edges appears to be parallel 
(see 3.4) 
Mark each half-edge (forward and reverse for 
each edge) as unallocated 
(Find the faces) 
While there are half-edges not allocated to a face 

If any listed triangular loop includes an 
edge which has only one unallocated half-
edge 

Create the corresponding triangular 
face 
Mark the three half-edges as allocated 
Remove the triangular loop from the list 

Otherwise 
Choose a starting edge, as described 
in 3.3 
Create the face, using Dijkstra's 
Algorithm, as described in 3.2 

3.2 Finding a Face 

The algorithm for finding one face is: 

Given a suitable half-edge (see 4.1.3) 
(Preliminaries) 
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The starting point is the end of the chosen half-edge 
The target is the start of the chosen half-edge 
Set Cost Known to True for the starting point and 
False for all other vertices 
Set Cost to Zero for the starting point and Unknown 
for all other vertices 
Set Branched from Here to True for the starting point 
Set Branched from Here to False for all other vertices 
Set Route for the starting point to the target 
Set Route for all other vertices to Unknown 
For each valid (see note below) vertex V which can 
be reached from the starting point via an unallocated 
half-edge 

Set Cost Known for V to True, Cost for V to 1, 
and Route for V to the starting point 

(Find the Face) 
While Cost Known for the target is False 

Choose the Current Branching Point: from the 
set of vertices for which Cost Known is True and 
Branched from Here is False, choose the one 
with the smallest Cost 
For each valid vertex V which can be reached 
from the Current Branching Point via an 
unallocated half-edge: 

Calculate the cost of traversing this half-edge 
(see 4.1.4) 
Calculate the total cost for reaching V by this 
route as Cost of Current Branching Point plus 
the cost of traversing this half-edge 
If Cost Known for V is False or if the total 
cost of reaching V by this route is less than 
the current Cost of V 

Set Cost Known for V to True, set Cost 
for V to the total cost of reaching V by 
this route, and set Route for V to 
Current Branching Point 

Set Branched from Here for Current Branching 
Point to True 

(Postprocessing) 
Find the loop of vertices by recursively retracing 
Route, starting at the target and working back 
Mark the half-edges used to form this loop as 
allocated 

 
Note: a vertex is valid (in the algorithm above) if 

including it in the current loop will not result in any three 
consecutive vertices being traversed in this loop which 
have already been traversed together in any preceding 

completed face loop. This ensures that we do not identify 
the two orientations (clockwise and anticlockwise) of a 
face loop as separate face loops. 

3.3 Avoiding Internal Faces 

Dijkstra’s Algorithm allows us control of two variables: 
choice of starting point and choice of cost function. Since 
our most pressing problem is to avoid internal faces, we 
use our ability to choose the starting-point in such a man-
ner as to ensure that the algorithm preferentially finds true, 
external faces. 

Consider the left-hand drawing in Fig. 1. In which order 
do we want to determine face loops? It would be best to 
start with an edge which is demonstrably convex in 3D: all 
other edges lie on the same side of a plane through this 
edge (a line in 2D is demonstrably convex in 3D if all other 
lines lie on the same side of the (extended) line). 

Perhaps we start with the top face, since this is all 
trihedral. We follow this with the four faces which border 
it, since we can ensure that these will be in the same 
orientation (clockwise or anticlockwise) as the initial face. 

But which face should we follow next? We do not want 
to start at an edge joining the non-trihedral vertices, as that 
could lead us to follow an internal face. However, starting 
at an edge on the bottom face can also lead to a problem: 
since this is isolated from the faces we have already 
determined, there is no guarantee that we will follow it in 
the same orientation (clockwise or anticlockwise). What 
we want to do is start with one of the edges joining a 
partially-used non-trihedral vertex to an unused trihedral 
vertex. 

Accordingly the priority order for choosing starting 
edges is: 

1. the remaining half-edge of any edge joining two 
trihedral vertices, both of which have already 
been used in one or more faces, 

2. a half-edge of any edge joining two trihedral 
vertices, one of which has already been used in 
one or more faces, 

3. a half-edge of any edge joining a trihedral vertex 
which has already been used in one or more faces 
to any vertex, 

4. a half-edge of any edge joining a trihedral vertex 
to any vertex which has already been used in one 
or more faces, 

5. a half-edge of any convex boundary edge joining 
two trihedral vertices, 

6. a half-edge of any other edge joining two 
trihedral vertices. 

Within each category, edges which are included in 
triangular loops which necessarily correspond to faces are 
to be preferred to those which are not, and edges which are 
included in quadrilateral loops which plausibly correspond 
to faces are to be preferred to those which are not. 
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3.4 Choosing the Right Path: Cost Function 

Dijkstra’s Algorithm assigns a cost, also termed the path 
length, for traversing each edge. Since geometry is conti-
nuous and path length is the only non-integer quantity in 
Dijkstra's algorithm, we use the cost to reflect the require-
ment that each face loop should be planar. For our purpos-
es, we wish the cost to be small if the edge is close to being 
coplanar with the path taken to it, and large if the edge is 
far from coplanar with the path taken to it. 

Varley (2003) showed that with an inflated wireframe, 
choosing the wrong path can be normally avoided by 
sensible choice of cost function. To test whether it is 
possible to do this for 2D wireframes too, we make use the 
idea that face loops should preferably comprise two groups 
of parallel lines. 

It is worth noting that the only difference between the 
2D and 3D versions of this algorithm is that they use 
different cost functions. 

We calculate the cost of traversing an edge as 
cost=ε+(1/max(ε,Merit))-1. Merit, in the range 0–1, varies 
depending on whether we are working in 2D, before 
inflation (see 4.1.4.1) or in 3D, after inflation (see 4.1.4.2). 
ε is a small value (we use ε= 10-6) included to ensure that 
the cost is always finite and positive. 

3.4.1 2D Path Length Function 

We calculate the path length function for working in 2D as 
follows: 

Let D = vertex under consideration 
Let C = known vertex prior to D 
Let B = known vertex prior to C 
Let A = known vertex prior to B 
While AB and BC are collinear 

Let B = known vertex prior to C 
Let A = known vertex prior to B 

If A is not a known vertex, merit is 0.5 (to make the cost of 
edge CD = 1) 

Merit is the higher of (cos α)k and (cos β)k where α  is 
the angle between AB and CD, β  is the angle between BC 
and CD, and k is an arbitrary constant.  

For historical reasons, we use k=10. 

3.4.2 3D Path Length Function 

The function which we use to determine how close two 
lines are to being parallel is (â·û)k , where â is a normalised 
vector in the directions of the edge under consideration, û 
is the closest normalised vector to in the plane of the pre-
vious vertices on the path to this edge  (calculated as 
û=(â×ô)×â, where ô is a normal to the plane) and k is an 
arbitrary even integer constant. For historical reasons, we 
use k=10. 
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