
© Regeo. Geometric Reconstruction Group

www.regeo.uji.es

Technical Reports. Ref. 05/2009

Implementing the new algorithm for finding faces
in wireframes

Peter A.C. Varley

Department of Mechanical Engineering and Construction, Universitat Jaume I, Spain

Abstract
This Technical Note describes an implementation of a new method of finding faces in wireframes. It also provides a
basis for implementing the same algorithm to solve other least-cost graph problems where the cost of traversing an
edge is context-dependent.

Index Terms: Wireframe, Face Identification, Line-Drawing Interpretation, Visual Perception

1. Introduction

In Varley and Company (2009), we introduce a new algo-
rithm for finding faces in wireframes. This algorithm could
be adapted for use in other least-cost graph problems where
the cost of traversing an edge is not fixed but context-
dependent.

This technical note offers guidance for implementing
this algorithm. Section 2 describes the “pure” algorithm,
and should be used as a guide when implementing the al-
gorithm in other contexts. Section 3 describes the algo-
rithm as implemented for Varley and Company (2009),
which includes additional clauses to handle the awkward
special case of K-vertices, described in Section 5.5 of Var-
ley and Company (2009).

Our input data is partly topological (a undirected graph
G(V,E)) and partly geometric ((x,y) coordinates for each
vertex of the graph). The graph is subject to the restrictions
(i) that no edge connects a vertex to itself and (ii) no two
edges join the same two vertices.

Formally, the problem to be addressed is best expressed
in terms of half-edges, where a half-edge is an arrow of the
directed graph G’(V,A) which contains arrows {a,b} and
{b,a} if and only if the original undirected graph G(V,E)
contains the edge {a,b}.

A cycle is a closed path of half-edges.
The first objective is to obtain a set of cycles in which

each half-edge is included in exactly one cycle. Addition-
ally, a topology must be geometrically realisable: it must
be possible to select vertex z-coordinates such that each

cycle is planar (in practice, it is necessary to specify “pla-
nar within a tolerance” rather than “exactly planar”).

Where only one valid set of cycles exists, the objective
is simply to find it. Where more than one valid set of cy-
cles exists, the objective is to find the one which matches
the interpretation of the drawing which a human interpreter
would consider to be the most plausible.

It is assumed that at least one valid set of cycles exists.
The related but distinct problem of determining whether or
not any valid set of cycles exists is not addressed here.

2. 2. GENERAL IMPLEMENTATION

2.1 2.1 DATA STRUCTURES

This section describes internal data structures and their
associated operations.

One internal data structure is used. A string is a data
structure which contains:

• Start and end vertices

• An ordered sequence of zero or more intermedi-
ate vertices

• A priority
The two operations which are performed on strings are

concatenation and merger.
Concatenation combines two strings S and T to form a

single string S’. It proceeds as follows:

• The start vertex of S’ is the start vertex of S

2 Varley P.A.C./ Implementing the new algorithm for finding faces in wireframes

• The end vertex of S’ is the end vertex of T

• The intermediate vertices of S’ are (in sequence)
the intermediate vertices (if any) of S, the
start vertex of T and the intermediate vertices
(if any) of T

• The priority of S’ is application-dependent (I
recommend that it should be lower than the
priority of the higher-priority of the two
strings S and T)

• The two strings S and T are deleted and the sin-
gle string S’ is added in their place

Concatenation can only be performed if the end vertex
of S is the same as the start vertex of T. It cannot be per-
formed if any other vertex of S (start vertex or intermediate
vertices) is the same as any other vertex of T (intermediate
vertices or end vertex). It cannot be performed if the new
vertex triple (centred on the common vertex) created by the
operation already appears in any completed face or any
other string.

Merger combines two strings S and T to form a single
face F. It proceeds as follows:

• The vertices of F are (in sequence): the start ver-
tex of S; the intermediate vertices (if any) of
S; the start vertex of T; and the intermediate
vertices (if any) of T.

• The two strings S and T are deleted and the face
F is created and exported to the calling pro-
gram.

Merger can only be performed if the end vertex of S is
the same as the start vertex of T and the end vertex of T is
the same as the start vertex of S. It cannot be performed if
any of the intermediate vertices of S is the same as any of
the intermediate vertices of T. It cannot be performed if
either of the new vertex triples (centred on the common
vertices) created by the operation already appears in any
completed face or any other string. It cannot be performed
if neither S nor T has intermediate vertices (a face must
contain at least three vertices).

2.2 ALGORITHM

Stage 1: Initialisation
. Perform any application-dependent initialisation

which is required
. Initialise the master list by creating the initial pool of

strings (two per edge)
. Merge two strings to break the initial symmetry

Stage 2: search for forced moves in the master list
. If the master list is empty, exit
. Search the master list for forced moves. If one is

found:
. . Perform the forced move in the master list

. . If this move completes a cycle

. . . Merge the two strings in the master
list to complete the cycle

. . . Export the completed cycle

. . . Remove the string from the master
list

. . Repeat from Stage 2

Stage 3: search for face completions in the master list
. Search the master list for mergers which will com-
plete cycles. If one is found:
. . Merge the two strings in the master list to

complete the cycle
. . Export the completed cycle
. . Remove the string from the master list
. . Repeat from Stage 2

Stage 4: examine alternatives
. Take a working copy of the master list

Stage 4a: continue examining alternatives
. Find the highest priority string S in the working

copy, and the string T which has the best mating
value with S

. Merge S and T in the working copy, reducing the
priority of the resulting merged string

Stage 4b: examine consequences of most recent move (i):
forced moves
. Search the working copy for forced moves. If one is

found:
. . Perform the forced move in the master list
. . If this move completes a cycle
. . . Merge the two strings in the work-

ing copy to complete the cycle
. . . Export the completed cycle
. . . Remove from the master list all

strings which contribute to this cy-
cle.

. . . Repeat from Stage 2

. . Repeat from Stage 4b

Stage 4c: examine consequences of most recent move (ii):
face completions

 Varley P.A.C./ An Implementation of Dijkstra’s Algorithm for Finding Faces in Wireframes 3

. Search the working copy for mergers which will
complete cycles. If one is found:

. . Merge the two strings in the working copy
to complete the cycle

. . Export the completed cycle

. . Remove from the master list all strings
which contribute to this cycle

. . Repeat from Stage 2

. Repeat from Stage 4a

3. IMPLEMENTATION FOR FINDING FACES IN
WIREFRAMES

3.1 DATA STRUCTURES

This section describes additional internal data structures
and their associated operations.

A potential through-edge is a data structure which con-
tains:

• Start, middle and end vertices

• A flag indicating whether the through-edge is

used in any cycle of edges

Through-edges modify the operations (concatenation
and merger) available to strings. For any through-edge with
start, middle and end vertices S, V and T, either S-V-T or
T-V-S (but not both) must eventually be part of a face.

The flag is initially set to 3. When strings U-V-W are
merged: the flag of any through S-V-T is decremented by
2; the flag of any other through S-V-* or T-V-* is decre-
mented by 1; and any through edge with the flag now zero
is deleted from the list of through-edges. This update
should be implemented as part of the processes of concate-
nation and merger (Section 2.1).

If the through-edge flag S-V-T is exactly 2, strings S-V
and V-T must be merged. This should be implemented as
part of the process of checking for forced moves (Section
3.3.1).

If the through-edge flag S-V-T is exactly 3, strings S-V
and V-T may be merged. This test should be implemented
as part of the process of checking whether concatenation or
merger is permitted (Section 2.1).

3.2 PREPROCESSING

This section describes processing which is best carried out
once, before proceeding to the main algorithm.

3.2.1 Detection of Triangular Loops

Algorithm: for each vertex V: for each pair of edges E and
F touching V, if an edge exists which joins the other end of
E to the other end of F, a triangular loop has been found, in
which case add it to the list.

2.2.2 Detection of Quadrilateral Loops

Algorithm: for each pair of (nearly) parallel edges E and F
in the same subgraph, determine the vertices UE, VE, UF
and VF; if all vertices are different, determine whether (i)
edges UE-UF and VE-VF exist or (ii) edges UE-VF and UF-
VE exist; in either case, if these two edges are (nearly)
parallel, a quadrilateral loop has been found, in which case
add it to the list.

2.2.3 IdentifyThroughVertices

Algorithm: for each pair of (nearly) parallel edges E and F
meeting at a vertex V where (i) four or five edges meet at
V or (ii) six or more edges meet at V, the remaining four
being on the same side of the line through E and F: this
constitutes a through edge, so add it to the list.

3.2.4 Others

Note: in practice, inter-edge angles are better calculated as
required, not by a pre-processor.

3.3 3.3 ALGORITHM

Stage 1: Initialisation
. Detect triangular loops, quadrilateral loops and

through edges, as described above
. Initialise the master list by creating the initial pool of

strings (two per edge)
. Break the initial symmetry (Section 3.3.2)

Stage 2: search for forced moves in the master list
. If the master list is empty, exit
. Search the master list for forced moves (Section

3.3.1). If one is found:
. . Perform the forced move (Section 3.3.1) in

the master list
. . If this move completes a cycle
. . . Merge the two strings in the master

list to complete the cycle
. . . Export the completed cycle
. . . Remove the string from the master

list
. . Repeat from Stage 2

Stage 3: search for face completions in the master list
. Search the master list for mergers which will com-

plete cycles. If one is found:
. . Merge the two strings in the master list to

complete the cycle
. . Export the completed cycle

4 Varley P.A.C./ Implementing the new algorithm for finding faces in wireframes

. . Remove the string from the master list

. . Repeat from Stage 2

Stage 4: examine alternatives
. Take a working copy of the master list

Stage 4a: continue examining alternatives
. Find the highest priority string S in the working

copy, and the string T which has the best mating
value with S

. Merge S and T in the working copy, reducing the
priority of the resulting merged string

Stage 4b: examine consequences of most recent move (i):
forced moves
. Search the working copy for forced moves (Section

3.3.1). If one is found:
. . Perform the forced move (Section 3.3.1) in

the master list
. . If this move completes a cycle
. . . Merge the two strings in the work-

ing copy to complete the cycle
. . . Export the completed cycle
. . . Remove from the master list all

strings which contribute to this cy-
cle.

. . . Repeat from Stage 2

. . Repeat from Stage 4b

Stage 4c: examine consequences of most recent move (ii):
face completions
. Search the working copy for mergers which will

complete cycles. If one is found:
. . Merge the two strings in the working copy

to complete the cycle
. . Export the completed cycle
. . Remove from the master list all strings

which contribute to this cycle
. . Repeat from Stage 2
. Repeat from Stage 4a

3.3.1 Forced Move

Input parameter: list (master list or working list)

Stage 1: detection of forced moves

Initialise a count to zero
For each pair of strings S and T in the given list
. If the end vertex of T is the start vertex of S
. . If the through edges (penultimate vertex of

T, end vertex of T) and (end vertex of T,
start vertex of S) require that the two
strings must be concatenated or merged
(Section 3.1), set the count to one and exit
the loop as this merger must be performed
regardless of what else is possible

. . Otherwise, if strings S and T can be
merged (Sections 2.1 and 3.1), increment
the count

If the resulting count is exactly one, there is a forced move
to be performed

Stage 2: Performing the forced move

If the end vertex of S is the start vertex of T, merge the two
strings to create a face (Sections 2.1 and 3.1)
Otherwise, concatenate the two strings (Sections 2.1 and
3.1)

3.3.2 Make First Move

Choose the highest-priority trihedral vertex as the seed
vertex V

If an appropriate seed vertex V is found
. Choose any string S starting with V and a string T

which ends at V and is not the other half-edge of S
and merge them

Else
. Choose any triangular loop of edges and create a

face from them, deleting the three edges from the
master list

References

[1] P.A.C. Varley and P.P. Company, 2009. A New Algo-
rithm For Finding Faces In Wireframes, accepted for
publication in Computer-Aided Design.

