
© Regeo. Geometric Reconstruction Group

www.regeo.uji.es

Technical Reports. Ref. 11/2018

Finding vertices in 2D line-drawings of polyhedral

shapes

Pedro Company1, Raquel Plumed2, Peter A.C. Varley1, Jorge D. Camba3

1Institute of New Imaging Technology, Universitat Jaume I, Spain
2Departament of Mechanical Engineering and Construction, Universitat Jaume I, Spain

3Department of Computer Graphics Technology, Purdue University, USA

Abstract

This technical report revisits the problem of detecting junctions in 2D sketches that depict 3D vertices. Our purpose

is to use an artificial perception model to build an algorithm that not only detects junctions in careful sketches created

by skilled engineers and designers, but also detects junctions when skilled people draw casually to quickly convey

rough ideas.

Our approach scores the likelihood of the junctions, i.e., calculates a figure of merit that estimates how likely a junction

is to be perceived as such. Some examples are included to demonstrate the capabilities and limitations of the approach.

Key words: Sketches-based modeling. Polyhedral shapes. Vertices. Junctions.

1. Introduction

A particular research area in the Sketch-Based Modeling

(SBM) domain is aimed at processing geometric figures

sketched in 2D to automatically generate the corresponding

geometric 3D models such as those used by

CAD/CAM/CAE applications.

Current Sketch-Based Modeling approaches for extracting

junctions from digital images are mostly incomplete, as they

simply merge endpoints that are near each other, thus

ignoring the facts that different vertices may be represented

by different (but close) junctions, and that the endpoints of

lines that depict edges that share a common vertex may not

necessarily be close to each other, particularly in quickly

sketched drawings. Many reconstruction approaches assume

that junctions are carefully depicted in the sketch ([XCS14]

is a recent example). However, junctions are not necessarily

contained explicitly in the original sketch or automatically

obtained from the vectorization stage.

We describe and assess an improved approach for

merging tips of vectorized lines to produce 2D junctions

(points where the tips of the lines meet) that depict 3D

vertices (points where the edges of polyhedral shapes meet).

Our proposed approach is described in [CVPC18].

Our general assumptions are that (a) the problem of

detecting junctions in sketches is not merely geometrical

(see [Kan79], cited by [JGH09]), and (b) that skilled people

may draw both carefully and casually. Careful sketches are

used to convey detailed and/or finished ideas, whereas

casual sketches convey on-the-fly and/or incomplete ideas.

The quality of sketches of an average population can be

viewed as a continuum including good and bad sketches. For

typical users of CAD oriented SBM tools this continuum is

clearly biased towards good sketches, since engineers and

designers are trained sketchers. However, we distinguish

between careful and casual sketches, not as extremes of a

continuum, but as two different modes used consciously for

different purposes.

People use sketches because they convey information

that can readily be perceived by humans (although not so

readily by computers). In addition to the current limitations

in artificial perception, a standalone global detection

approach may get unnecessarily overloaded if casually

sketched line-drawings are not beautified in advance. This is

why we advocate for a local detection of junctions.

To coordinate local and global perception, our approach

scores the likelihood of potential junctions in a sketch. This

functionality results from our belief that sketches convey

perceived geometry instead of actual geometry. Therefore,

we do not assert “this is a vertex” but “this is more or less

likely to be a vertex.” In this way, we provide a candidate

beautified line drawing for a subsequent global perception

mechanism based on our hypothesis that a local intersection

 P. Company et al./ Finding vertices in 2D line-drawings of polyhedral shapes 2

of a set of strokes which can be barely accepted as depicting

a common junction when perceived separately, may be seen

as a valid vertex when put into context (see, for instance, the

lower left junction in the right example of Figure 1).

2. Terminology

The input for SBM approaches are sketches, which are

freehand drawings comprised of strokes. Strokes are

scribbled lines sampled by a set of consecutive nodes caught

between “pen-down” and “pen-up” movements. The result

is an ordered sequence of points, which are connected by

segments to approximate the original scribble. A vectorized

line can be obtained by suitable fitting-lines-into-stroke

approaches.

The input for our vertex-merging approach is a set of

vectorized line segments (or simply “lines,” as referred to in

the rest of the paper) delimited by their tips. Then, vertex

detection must merge dangling tips to determine junctions

that depict valid vertices. Hence, the output is a line-

drawing: a list of lines and a list of junctions, where each

line connects two junctions. Junctions are x, y coordinate

pairs of shared endpoints that likely correspond to vertices

of the depicted object.

We distinguish careful and casual sketches (also called

detailed and quick sketches). Examples of both types of

sketches are provided in Figure 1. Based on the classification

of sketches defined by Ferguson [Fer92], we assume the idea

that thought sketches are usually casual, while prescriptive

sketches tend to be more careful.

Fig. 1. Careful (left) and casual (right) sketches of a prism

3. The algorithm

The input for our algorithm is a list of tips, defined by their

2D coordinates, and a list of lines where each line connects

two tips. Two or more lines may share a common tip. Thus,

m= 2*n tips (at the most) are initially defined for n lines.

For implementation purposes we split each stroke into

two semi-lines, in which tips are reversely ordered. Only the

first tip of each semi-line is analyzed, while the other is

simply used to calculate the length and orientation of the

semi-line.

As output, clustered tips are merged. When a pair of tips

is merged, one is removed, and the other is preserved (as is,

or after changing its coordinates).

Lines are visited twice. For each semi-line, one tip is

assigned as the first tip.

Functions implemented by the algorithm include:

- The function “allowance (i, j)” returns a threshold

that prioritizes right angles. The return value varies

within the range [0, 1] depending on the angle

between lines i and j, explained in section 3.1 of

[CVPC18]. The function generalizes for dangling

lines that can merge to junctions by calculating the

lowest allowance between the dangling line and

each of the lines in the junction.

- The function “meritRotation (NumJ, newPoint)”

returns a figure of merit that decreases when the

lines connected to junction NumJ rotate when

redirected to newPoint. Merit is 1 if the lines do not

rotate, and 0 if at least one of them rotates more

than maxRot.

- The function “GetNeighbourTips()” returns the

lists of tips that are close to each tip. It is

implemented as follows:

1. The endpoint of each semi-line is defined as a

tip (t).

2. The list of tips (T) is sorted by ascending x

coordinates.

3. The Delaunay triangulation of T is calculated.

4. A tip t is selected.

5. All tips (nt) that share at least one triangle with

t are saved as neighbors (∀ nt neighbor of t).

6. The process is repeated (back to step 4) for all

the tips (∀ t ∈ T).

- The function “GetSemiLines()” returns the list of

semi-lines. It is implemented by duplicating each

line, and swapping first and second tips.

- The function MergeCarefulTips () merges neighbor

tips of carefully drawn lines. It is implemented as

follows:

1. The longest unvisited semi-line is selected (I).

a. A semi-line that ends at a neighbor

tip of I is selected (J).

b. The merit MI-J of the candidate

junction I-J is calculated (as

described at the end of section 3.1 in

[CVPC18]).

c. If the junction is valid (tips are

closer than maxDist and lines rotate

less than maxRot), the candidate

junction (I-J) and its merit (MI-J) are

saved.

d. If at least one valid junction was

saved, the two tips with the highest

merit (max MI-J) are merged.

e. The merged tip and its connected

tips are removed from the neighbor

list, and the process repeats for all

the remaining neighbor tips (back to

step 1.a).

2. The process is repeated for all semi-lines I

(back to step 1).

- The function MergeCasualTriplets () merges tips of

triplets of lines that intersect with one another

(mainly if they intersect close to their tips). It is

implemented as follows:

 P. Company et al./ Finding vertices in 2D line-drawings of polyhedral shapes 3

1. Semi-lines whose first tip is not shared with

any other line are listed as dangling semi-

lines.

2. For each dangling semi-line I:

a. The dangling semi-lines that

intersect semi-line I in the valid

range (closer than InTol if the

intersection is inside segment I, or

closer than OutTol if the

intersection is outside) are listed.

b. Semi-lines with less than two valid

intersections are removed (as we

search for triplets).

c. Intersecting semi-lines are sorted

from closest to farthest to the tip of

semi-line I (I1, I2,…, In).

3. The search for valid triplets begins.

a. The longest unvisited dangling

semi-line is selected (I).

b. Semi-line I and the first two semi-

lines in its intersect list (I1, I2) are a

candidate triplet if:

i. (I, I2) or (I2, I) are the first

two consecutive semi-

lines in the intersect list of

I1.

ii. (I, I1) or (I1, I) are the first

two consecutive semi-

lines in the intersect list of

I2.

iii. Mutual intersections

between I, I1 and I2 are

closer than

maxDistTriplets.

c. Otherwise, I is marked as visited,

and the algorithm returns to a.

d. Semi-lines I, I1 and I2 are connected

to a common triplet junction located

at the centroid of the three

intersection points.

e. The merit of the common junction

(MT) is assigned as described in

section 3.2 of [CVPC18].

f. Semi-lines merged in the triplet (I,

I1, I2) are removed from the list.

4. The procedure is repeated while new triplets

are found.

5. The second search for valid triplets begins.

a. Select the longest unvisited

dangling semi-line (I).

b. Semi-line I and the two consecutive

semi-lines in its intersect list (Ij, Ij+1)

are a candidate triplet if:

i. (I, Ii+1) or (Ii+1, I) are two

consecutive semi-lines in

the intersect list of Ii.

ii. (I, Ii) or (Ii, I) are two

consecutive semi-lines in

the intersect list of Ii+1.

iii. Mutual intersections

between I, Ii and Ii+1 are

closer than

maxDistTriplets.

c. Semi-lines I, Ij and Ij+1 are

connected to a common triplet

junction located at the centroid of

the three intersection points.

d. The merit of the common junction

(MT) is assigned as described in

section 3.2 of [CVPC18].

6. The procedure is repeated while new triplets

are found.

- The function MergeCasualDanglingLines ()
merges isolated dangling lines to neighboring

junctions. It works as follows:

1. One dangling semi-line is selected (I)

2. For every junction J (tip of valence higher than

1) closer than a threshold

(maxDistDangling*allowance), and within

the valid range of semi-line I, the merit of

merging I to J (EDM) is calculated as

described in Section 3.2 of [CVPC18].

3. The junction JJ with the highest positive merit

is selected.

4. The new merit of the junction JJ is the

minimum between the current merit of the

junction and the merit of merging the dangling

line to the junction.

5. The tip of the dangling line I is added to the

junction JJ, only if the new merit is not

negative.

6. The procedure is repeated for all dangling

semi-lines I.

The pseudocode of the vertices finder is as follows:

GetJunctions()
{
 GetLineLengths();

 ReorderLongerLinesFirst();

 GetSemiLines();

 GetNeighbourTips();

 MergeCarefulTips();

 MergeCasualTriplets();

 MergeCasualDanglingLines();

}

4. Validation

The performance of our new approach cannot be compared

against a predefined ground truth, since there is no

“geometrical” solution to the problem of detecting junctions

in casual sketches. Even when a sketcher tries to explain her

intentions, and depending on the quality and complexity of

the sketch, people may interpret the same sketch differently.

For this reason, we defined a collection of 12 casual

sketches, and asked a group of subjects to number the

perceived junctions and mark the tips of the lines that

intersected at that junction.

Then, we parsed the examples to conclude that the

algorithm accurately detects what humans perceive (Figure

2). The only junction commonly detected by humans that

was not fully detected by the algorithm with the default

 P. Company et al./ Finding vertices in 2D line-drawings of polyhedral shapes 4

configuration was junction 12 in example 6, where tip 4 was

not merged.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Fig. 2. Figures of the experiment, as detected by the

algorithm

We built the benchmark based on our previous

experience, and following key assumptions that have been

stated elsewhere [CPVC18]: (1) there is no difference in the

perception of vertices depicted by junctions in casual

sketches between groups with different levels of exposure to

technical drawings, and (2) subjects largely agree on

perceiving the same junctions.

To further validate the benchmark, we conducted an

additional experiment to demonstrate that there are no

significant differences between our test sketches, and those

collected from other subjects.

Our hypothesis was that there are no significant

differences between the set of sketches we used with our

original participants, and other sketches created by different

individuals. We interviewed 91 subjects (17 from Spain, 61

from the US, and 13 from Italy). Most subjects had an

engineering background (18 were engineering educators and

73 engineering students). Every participant was asked to

casually sketch the models shown in Figure 3.

Fig. 3. Transparent models, built with SolidWorks, used in

the experiment

To help them understand the task the example shown in

Figure 4 was provided.

Fig. 4. Example shown in the instructions.

Participants were reminded to include the hidden edges

of the model (but to not represent them as dashed lines), and

draw each line individually (a single stroke for each line).

We asked them to draw all four sketches in a single piece

of paper, which was later scanned and emailed to the

authors. Not all the sketches we collected were included in

the analysis. Incorrect sketches included: (a) missing

strokes, (b) dashed hidden lines, (c) ignored short

beautification strokes and (d) overtraced sketches. We

discarded 44 sketches from model 1, 25 from model 2, 24

from model 3 and 43 from model 4. All from engineering

students. We guess that Model 4 frequently included missing

lines because of its complexity, while missing lines in Model

1 where possibly due to its point of view or orientation.

 P. Company et al./ Finding vertices in 2D line-drawings of polyhedral shapes 5

The participants’ sketches were vectorized manually by

the authors and the line drawings parsed against the “ground

truth” of the vertices of the models. Since the subjects were

asked to replicate four particular models, we assume they

tried to replicate the junctions of the model. Thus, our

algorithm was used to calculate which of those junctions

were more or less frequently detected.

Table 1 summarizes the relative frequency with which

vertices of each model were recognized correctly (“Ok”

column), and the frequency with which some unexpected

cases occurred. These cases are illustrated in Figure 5, which

distinguishes between false negatives (first row), and false

positives (second row).

(a) (b) (c)

(d) (e)

Fig. 5. Unexpected results, (a) dangling lines (lines with

valence 1), (b) short dangling lines, (c) duplicate vertices,

(d) grouped vertices and (e) lines grouped in incorrect

vertex.

Table 1: Algorithm results

OK (a) (b) (c) (d) (e)

Model 1 53% 30% 0% 0% 11% 34%

Model 2 64% 29% 3% 8% 5% 8%

Model 3 79% 10% 0% 7% 1% 4%

Model 4 61% 11% 28% 0% 11% 22%

From the analysis of the frequencies, we can conclude

that:

 The algorithm does not fail in recognizing all

vertices that are "carefully" drawn.

 The algorithm always assigns high merits (greater

than 0.5) to careful vertices.

 For more imperfect vertices, the assigned merits

are in the range [0, 0.5].

 The algorithm tends to leave lines without

converging to a vertex (dangling lines) before

making false convergences. In borderline cases of

particular points of view (such as Model 1) the

algorithm becomes more sensitive to casual

vertices.

 When the drawing contains strokes of very

different lengths (Model 4), the algorithm finds it

difficult to correctly group the short vertices.

 The algorithm seems to not be susceptible to the

direction in which the strokes are drawn. The

general metrics we used eliminate the possible

bias that could be introduced by drawing with the

right or left hand.

Examples with a large number of lines were not included

in the previous figures so the junctions could be clearly

displayed. Nevertheless, the algorithm can also solve these

complex shapes successfully, as shown in Figure 6.

In fact, the increase in the number of junctions is not a

problem for the algorithm, although it was noted during the

experiment that people tend to get tired and lose some

junctions when faced with sketches containing a growing

number of strokes. Thus, we cannot test the validity of the

algorithm compared to a statistically validated human

perception for sketches populated with increasing number of

junctions. Still, when a reduced group of persons was asked

to agree or disagree with the junctions detected by the

algorithm, the answer was always positive (although

sometimes accompanied by surprise, as the algorithm

detected junctions unnoticed by some people at first sight).

Fig. 6. Careful sketch of a complex 3D polyhedral shape

To further test the merits provided by the algorithm, we

selected careful and casual sketches of 2D shapes (see

Figure 7 for some representative examples), as well as

careful and casual sketches of 3D polyhedral shapes (see

Figure 8 for some representative examples).

(a)

(b)

 P. Company et al./ Finding vertices in 2D line-drawings of polyhedral shapes 6

(c)

Fig. 7. Careful and casual sketches of simple 2D shapes,

with their merits

Fig. 8. Careful and casual sketches of 3D polyhedral

shapes, with their merits

In most of the examples we tested, the perceptually

correct solution was successfully found by the algorithm.

Generally, neither false junctions were detected, nor close

but different junctions were merged. In the worst cases, only

certain junctions were incompletely merged (see Figure 9).

Furthermore, the merits seem to be in accordance with the

probability of the junctions to be perceived as such by

humans. However, the algorithm is clearly sensitive to the

thresholds defined as parameters (see Table 2). For this

reason, some intersections perceived as junctions by humans

are not perceived correctly by the algorithm when tuned with

the default parameters (which were conservatively defined

to prevent false positives).

Fig. 9. Casual sketch out of range for the proposed

thresholds

Tips of exceedingly casual sketches can still be safely

grouped—thus reducing false negatives—if the thresholds

are increased, which is acceptable only if different corners

are not too close to each other. For instance, by increasing

parameter maxDist up to 13%, the casual star from Figure 9

can be solved correctly. The same occurs for example 6 in

Figure 2, which is correctly solved by increasing maxDist to

10%. Similarly, example 3 in Figure 8 is correctly solved by

increasing maxDist to 14%. However, arbitrarily increasing

the parameters is prone to produce false positives, as shown

in Figure 10, where the parameter maxDist was increased to

34% for the star in Figure 9, but barely 9% for the prism on

the right side of Figure 1.

Fig. 10. Casual sketches solved with false positives

Reducing maxDist (from 8% to 4%, for example) would

prevent the algorithm from accepting casual junctions, while

increasing it (up to 20%) would allow the algorithm to detect

very poorly sketched junctions (but would also produce the

incorrect merge of close junctions). Thus, the parameter may

vary from less than 5% for careful and/or dense sketches up

to 20% for those very casual but not dense (“dense” sketches

are those with nearly overlapping junctions). Similarly,

reducing the valid range by half (inTol= 25% and outTol=

12%) prevents the algorithm from detecting false positives

in dense careful sketches.

Varying threshold values is not recommended. Our

belief is that most false positives (tips merged to define non-

perceived junctions) will be hard to repair by users, whereas

false negatives (junctions perceived by humans but not fully

merged by the algorithm) can be clearly identified and are

easy to edit manually (or in a subsequent automatic merging

stage that could take advantage of global information). Still,

while a balanced set of parameters is recommended, valid

configurations for careful and casual sketches are tabulated

in Table 2.

 P. Company et al./ Finding vertices in 2D line-drawings of polyhedral shapes 7

Table 2: Recommended algorithm configurations

Parameter Careful Balanced Casual

maxDist 12% 8% 4%

maxRot 5° 10° 10°

RM 0.2 0.5 0.8

Valid range: inTol 25% 50% 50%

Valid range: outTol 12.5% 25% 25%

maxDistTriplets 5% 10% 15%

ETM 0.2 0.5 0.8

maxDistDangling 5% 10% 15%

The first and second configurations are valid for the two

types of sketches represented in Figure 1, as the first

prioritizes reification, while the second prioritizes

emergence (and both configurations output similar merits).

Higher values of maxDist are useful to detect lines that do

not intersect close to each other (Figure 3 middle in

[CVPC18]), but are counterproductive to detect lines with

long tails (Figure 3 right in [CVPC18]), as the tips of the

long tails may be close to an adjacent junction (Figure 10,

right). We note that reducing maxDist nearly cancels

reification, thus preventing poorly drawn tips of neighbor

junctions from emerging to produce false reified junctions.

Examples of the type of extremely casual—and/or

moderately dense—sketches parsed by the third

configuration are shown in Figure 11.

Fig. 11. Extremely casual sketches, which can be parsed by

the third configuration in Table 2

We note maxRot is independent on the size of the line,

as we realized that humans perceive and are highly sensitive

to even small rotations, irrespective of the length of the line.

Furthermore, we observed that people tend to accurately

determine the orientation of close lines, thus allowing the

algorithm for large rotations to result in merging endpoints

of lines intended to be parallel. Hence, in an attempt to avoid

false positives, we opted for a strategy that may produce

false negatives for short, isolated and poorly drawn lines.

The established merits could be used to implement a

dichotomous algorithm by simply considering valid those

candidate junctions with merits greater than a fixed

threshold (in accordance with Table 2). Thus, a threshold

over 0.5 implies accepting only good junctions (which

mainly include careful tips separated by less than

maxDist/2), a threshold of 0.25 results in accepting good and

average junctions (which mainly exclude casual tips

separated by more than maxDist/2), and a threshold of 0

accepts all the merged junctions.

The algorithm is not intended to segment “passing”

strokes (i.e., strokes that encompass two lines that should be

split and connected to a close junction). For instance, the

stroke that connects tips 0 and 2 in Figure 12 is not split into

segments 0-6 and 6-2, which would better represent the

wireframe of the depicted polyhedral shape. This is a future

development that requires global considerations (regarding

the so-called T-vertices, and possibly using information

about faces), to prevent false positives such as the one that

could easily appear in the wedge (sketch h) in Figure 2.

Fig. 12. Junctions (and merits) of a casual sketch of a

polyhedral shape, were a passing line (0-2) was not

merged to a near junction (6)

Finally, the current version of our algorithm is still

unable to automatically solve extremely casual sketches

with dense (nearly overlapping) junctions. This problem is

not considered a limitation of our current algorithm, as it is

mainly associated with casual sketches that do not depict 3D

polyhedral shapes but flat patterns. Although some of these

sketches could still be solved by suitably tuning our

algorithm, we are still unable to automatically detect the type

of the sketch. As a result, the algorithm needs to be re-tuned

manually for every sketch type.

The experiment has shown that people also doubt and

disagree when perceiving casual sketches, mostly if the

sketches are also dense. Thus, the sensitivity of the

algorithm cannot be considered a fault, as it replicates

human behavior. The important thing is that the algorithm

quantifies the level of uncertainty, thus allowing for a

subsequent vectorization stage to solve those dubious

junctions by using global information about the depicted

model. We speculate that sketches that are drawn so poorly

cannot be fully interpreted by providing local information

only. Instead, global scene information is required for

interpretation. It is only after assuming that Figure 9 depicts

a four pointed star that finding their junctions becomes easy.

Similarly, humans perceive the top corner of Figure 13

because the sketch is perceived as a pyramid.

 P. Company et al./ Finding vertices in 2D line-drawings of polyhedral shapes 8

Fig. 13. Casual pyramid not solved by the default

configuration of the algorithm which searches for local

junctions without global information about the drawing.

5. Conclusions

Detection of vertices is an important and useful stage in

Sketch-Based Modeling research. However, current

methods for vertex detection are still ineffective when

applied to casual sketches.

In this paper, we described an improved approach for

determining the vertices of 2D line drawings. The algorithm

detects junctions—which are likely to correspond to vertices

of the depicted object—based on a local interpretation

approach. The universe of drawings is limited to polyhedral

shapes, but our method works with line drawings derived

from both careful and casual sketches and does not require

any information other than vectorized lines.

Our hypothesis that carefully sketched vertices must be

reified, while casually sketched vertices must emerge, was

indirectly validated, as it guided the design and

implementation of an algorithm that improves on previous

vectorization techniques, which were based exclusively on

reification strategies.

The perceptual essence of the algorithm combined with

its sequential detection provides efficiency, since the

algorithm initially fixes the best defined junctions, which

makes them difficult to distort during subsequent iterations.

Our approach quickly and correctly detects vertices in

line drawings of polyhedral objects that have been

vectorized from hand-drawn sketches. Vertices of

polyhedral shapes depicted by highly casual sketches can

still be detected provided that the sketch does not contain

extremely close junctions. In addition, our tests suggest that

our method, if re-tuned, may also be useful for other

sketched shapes.

6. References

[1] [XCS14] Xu B., Chang W., Sheffer A., Bousseau

A., McCrae J., Singh K. (2014) True2Form: 3D Curve

Networks from 2D Sketches via Selective Regularization,

ACM Transactions on Graphics (Proc. SIGGRAPH),

Vol.33, No 4.

[2] [CVPC18] Company P, Varley P.A.C., Plumed

R., Camba J.D. Iberoamerican congress on pattern

recognition CIARP18. Accepted paper.

[3] [Kan79] Kanizsa G. Organization in Vision:

Essays on Gestalt Perception. Praeger, New York, 1979.

[4] [JGH09] Johnson G., Gross M.D., Hong J., Do

E.Y.L. (2009) Computational support for sketching in

design: a review. Foundations and Trends in Human–

Computer Interaction, 2 (1), pp. 1–93.

[5] [Fer92] Ferguson E.S. Engineering and the

Mind’s Eye. The MIT Press, 1992.

[6] [GFP13] Governi L., Furferi R., Palai M., Volpe

Y. (2013) 3D geometry reconstruction from orthographic

views: A method based on 3D image processing and data

fitting. Computers in Industry, 64, pp. 1290–1300.

[7] [CPVP8] Company P., Plumed R., Varley P.A.C.

and Camba J.D. Algorithmic perception of vertices in

sketched drawings of polyhedral shapes. Under review.

