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Abstract 

This technical report revisits the problem of detecting junctions in 2D sketches that depict 3D vertices. Our purpose 

is to use an artificial perception model to build an algorithm that not only detects junctions in careful sketches created 

by skilled engineers and designers, but also detects junctions when skilled people draw casually to quickly convey 

rough ideas. 

Our approach scores the likelihood of the junctions, i.e., calculates a figure of merit that estimates how likely a junction 

is to be perceived as such. Some examples are included to demonstrate the capabilities and limitations of the approach. 
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1. Introduction 

A particular research area in the Sketch-Based Modeling 

(SBM) domain is aimed at processing geometric figures 

sketched in 2D to automatically generate the corresponding 

geometric 3D models such as those used by 

CAD/CAM/CAE applications. 

Current Sketch-Based Modeling approaches for extracting 

junctions from digital images are mostly incomplete, as they 

simply merge endpoints that are near each other, thus 

ignoring the facts that different vertices may be represented 

by different (but close) junctions, and that the endpoints of 

lines that depict edges that share a common vertex may not 

necessarily be close to each other, particularly in quickly 

sketched drawings. Many reconstruction approaches assume 

that junctions are carefully depicted in the sketch ([XCS14] 

is a recent example). However, junctions are not necessarily 

contained explicitly in the original sketch or automatically 

obtained from the vectorization stage. 

We describe and assess an improved approach for 

merging tips of vectorized lines to produce 2D junctions 

(points where the tips of the lines meet) that depict 3D 

vertices (points where the edges of polyhedral shapes meet). 

Our proposed approach is described in [CVPC18].  

Our general assumptions are that (a) the problem of 

detecting junctions in sketches is not merely geometrical 

(see [Kan79], cited by [JGH09]), and (b) that skilled people 

may draw both carefully and casually. Careful sketches are 

used to convey detailed and/or finished ideas, whereas 

casual sketches convey on-the-fly and/or incomplete ideas. 

The quality of sketches of an average population can be 

viewed as a continuum including good and bad sketches. For 

typical users of CAD oriented SBM tools this continuum is 

clearly biased towards good sketches, since engineers and 

designers are trained sketchers. However, we distinguish 

between careful and casual sketches, not as extremes of a 

continuum, but as two different modes used consciously for 

different purposes. 

People use sketches because they convey information 

that can readily be perceived by humans (although not so 

readily by computers). In addition to the current limitations 

in artificial perception, a standalone global detection 

approach may get unnecessarily overloaded if casually 

sketched line-drawings are not beautified in advance. This is 

why we advocate for a local detection of junctions. 

To coordinate local and global perception, our approach 

scores the likelihood of potential junctions in a sketch. This 

functionality results from our belief that sketches convey 

perceived geometry instead of actual geometry. Therefore, 

we do not assert “this is a vertex” but “this is more or less 

likely to be a vertex.” In this way, we provide a candidate 

beautified line drawing for a subsequent global perception 

mechanism based on our hypothesis that a local intersection 
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of a set of strokes which can be barely accepted as depicting 

a common junction when perceived separately, may be seen 

as a valid vertex when put into context (see, for instance, the 

lower left junction in the right example of Figure 1). 

2. Terminology 

The input for SBM approaches are sketches, which are 

freehand drawings comprised of strokes. Strokes are 

scribbled lines sampled by a set of consecutive nodes caught 

between “pen-down” and “pen-up” movements. The result 

is an ordered sequence of points, which are connected by 

segments to approximate the original scribble. A vectorized 

line can be obtained by suitable fitting-lines-into-stroke 

approaches. 

The input for our vertex-merging approach is a set of 

vectorized line segments (or simply “lines,” as referred to in 

the rest of the paper) delimited by their tips. Then, vertex 

detection must merge dangling tips to determine junctions 

that depict valid vertices. Hence, the output is a line-

drawing: a list of lines and a list of junctions, where each 

line connects two junctions. Junctions are x, y coordinate 

pairs of shared endpoints that likely correspond to vertices 

of the depicted object. 

We distinguish careful and casual sketches (also called 

detailed and quick sketches). Examples of both types of 

sketches are provided in Figure 1. Based on the classification 

of sketches defined by Ferguson [Fer92], we assume the idea 

that thought sketches are usually casual, while prescriptive 

sketches tend to be more careful. 

         

Fig. 1. Careful (left) and casual (right) sketches of a prism 

3. The algorithm 

The input for our algorithm is a list of tips, defined by their 

2D coordinates, and a list of lines where each line connects 

two tips. Two or more lines may share a common tip. Thus, 

m= 2*n tips (at the most) are initially defined for n lines. 

For implementation purposes we split each stroke into 

two semi-lines, in which tips are reversely ordered. Only the 

first tip of each semi-line is analyzed, while the other is 

simply used to calculate the length and orientation of the 

semi-line. 

As output, clustered tips are merged. When a pair of tips 

is merged, one is removed, and the other is preserved (as is, 

or after changing its coordinates). 

Lines are visited twice. For each semi-line, one tip is 

assigned as the first tip.  

Functions implemented by the algorithm include: 

- The function “allowance (i, j)” returns a threshold 

that prioritizes right angles. The return value varies 

within the range [0, 1] depending on the angle 

between lines i and j, explained in section 3.1 of 

[CVPC18]. The function generalizes for dangling 

lines that can merge to junctions by calculating the 

lowest allowance between the dangling line and 

each of the lines in the junction. 

 

- The function “meritRotation (NumJ, newPoint)” 

returns a figure of merit that decreases when the 

lines connected to junction NumJ rotate when 

redirected to newPoint. Merit is 1 if the lines do not 

rotate, and 0 if at least one of them rotates more 

than maxRot. 

 

- The function “GetNeighbourTips()” returns the 

lists of tips that are close to each tip. It is 

implemented as follows: 

1. The endpoint of each semi-line is defined as a 

tip (t). 

2. The list of tips (T) is sorted by ascending x 

coordinates. 

3. The Delaunay triangulation of T is calculated. 

4. A tip t is selected. 

5. All tips (nt) that share at least one triangle with 

t are saved as neighbors (∀ nt neighbor of t). 

6. The process is repeated (back to step 4) for all 

the tips (∀ t ∈ T). 

 

- The function “GetSemiLines()” returns the list of 

semi-lines. It is implemented by duplicating each 

line, and swapping first and second tips. 

 

- The function MergeCarefulTips () merges neighbor 

tips of carefully drawn lines. It is implemented as 

follows: 

1. The longest unvisited semi-line is selected (I). 

a. A semi-line that ends at a neighbor 

tip of I is selected (J). 

b. The merit MI-J of the candidate 

junction I-J is calculated (as 

described at the end of section 3.1 in 

[CVPC18]). 

c. If the junction is valid (tips are 

closer than maxDist and lines rotate 

less than maxRot), the candidate 

junction (I-J) and its merit (MI-J) are 

saved. 

d. If at least one valid junction was 

saved, the two tips with the highest 

merit (max MI-J) are merged. 

e. The merged tip and its connected 

tips are removed from the neighbor 

list, and the process repeats for all 

the remaining neighbor tips (back to 

step 1.a). 

2. The process is repeated for all semi-lines I 

(back to step 1). 

 

- The function MergeCasualTriplets () merges tips of 

triplets of lines that intersect with one another 

(mainly if they intersect close to their tips). It is 

implemented as follows: 



 P. Company et al./ Finding vertices in 2D line-drawings of polyhedral shapes 3 

1. Semi-lines whose first tip is not shared with 

any other line are listed as dangling semi-

lines. 

2. For each dangling semi-line I: 

a. The dangling semi-lines that 

intersect semi-line I in the valid 

range (closer than InTol if the 

intersection is inside segment I, or 

closer than OutTol if the 

intersection is outside) are listed. 

b. Semi-lines with less than two valid 

intersections are removed (as we 

search for triplets). 

c. Intersecting semi-lines are sorted 

from closest to farthest to the tip of 

semi-line I (I1, I2,…, In). 

3. The search for valid triplets begins. 

a. The longest unvisited dangling 

semi-line is selected (I). 

b. Semi-line I and the first two semi-

lines in its intersect list (I1, I2) are a 

candidate triplet if: 

i. (I, I2) or (I2, I) are the first 

two consecutive semi-

lines in the intersect list of 

I1. 

ii. (I, I1) or (I1, I) are the first 

two consecutive semi-

lines in the intersect list of 

I2. 

iii. Mutual intersections 

between I, I1 and I2 are 

closer than 

maxDistTriplets. 

c. Otherwise, I is marked as visited, 

and the algorithm returns to a. 

d. Semi-lines I, I1 and I2 are connected 

to a common triplet junction located 

at the centroid of the three 

intersection points. 

e. The merit of the common junction 

(MT) is assigned as described in 

section 3.2 of [CVPC18]. 

f. Semi-lines merged in the triplet (I, 

I1, I2) are removed from the list. 

4. The procedure is repeated while new triplets 

are found. 

5. The second search for valid triplets begins. 

a. Select the longest unvisited 

dangling semi-line (I). 

b. Semi-line I and the two consecutive 

semi-lines in its intersect list (Ij, Ij+1) 

are a candidate triplet if: 

i. (I, Ii+1) or (Ii+1, I) are two 

consecutive semi-lines in 

the intersect list of Ii. 

ii. (I, Ii) or (Ii, I) are two 

consecutive semi-lines in 

the intersect list of Ii+1. 

iii. Mutual intersections 

between I, Ii and Ii+1 are 

closer than 

maxDistTriplets. 

c. Semi-lines I, Ij and Ij+1 are 

connected to a common triplet 

junction located at the centroid of 

the three intersection points. 

d. The merit of the common junction 

(MT) is assigned as described in 

section 3.2 of [CVPC18]. 

6. The procedure is repeated while new triplets 

are found. 

 

- The function MergeCasualDanglingLines () 
merges isolated dangling lines to neighboring 

junctions. It works as follows: 

1. One dangling semi-line is selected (I) 

2. For every junction J (tip of valence higher than 

1) closer than a threshold 

(maxDistDangling*allowance), and within 

the valid range of semi-line I, the merit of 

merging I to J (EDM) is calculated as 

described in Section 3.2 of [CVPC18]. 

3. The junction JJ with the highest positive merit 

is selected. 

4. The new merit of the junction JJ is the 

minimum between the current merit of the 

junction and the merit of merging the dangling 

line to the junction. 

5. The tip of the dangling line I is added to the 

junction JJ, only if the new merit is not 

negative. 

6. The procedure is repeated for all dangling 

semi-lines I. 

 

The pseudocode of the vertices finder is as follows: 

 

GetJunctions() 
{ 
    GetLineLengths(); 

    ReorderLongerLinesFirst(); 

    GetSemiLines(); 

    GetNeighbourTips(); 

    MergeCarefulTips(); 

    MergeCasualTriplets(); 

    MergeCasualDanglingLines(); 

} 

4. Validation 

The performance of our new approach cannot be compared 

against a predefined ground truth, since there is no 

“geometrical” solution to the problem of detecting junctions 

in casual sketches. Even when a sketcher tries to explain her 

intentions, and depending on the quality and complexity of 

the sketch, people may interpret the same sketch differently. 

For this reason, we defined a collection of 12 casual 

sketches, and asked a group of subjects to number the 

perceived junctions and mark the tips of the lines that 

intersected at that junction. 

Then, we parsed the examples to conclude that the 

algorithm accurately detects what humans perceive (Figure 

2). The only junction commonly detected by humans that 

was not fully detected by the algorithm with the default 
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configuration was junction 12 in example 6, where tip 4 was 

not merged. 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

 
 

(i) (j) 

  

(k) (l) 

Fig. 2. Figures of the experiment, as detected by the 

algorithm 

We built the benchmark based on our previous 

experience, and following key assumptions that have been 

stated elsewhere [CPVC18]: (1) there is no difference in the 

perception of vertices depicted by junctions in casual 

sketches between groups with different levels of exposure to 

technical drawings, and (2) subjects largely agree on 

perceiving the same junctions. 

To further validate the benchmark, we conducted an 

additional experiment to demonstrate that there are no 

significant differences between our test sketches, and those 

collected from other subjects. 

Our hypothesis was that there are no significant 

differences between the set of sketches we used with our 

original participants, and other sketches created by different 

individuals. We interviewed 91 subjects (17 from Spain, 61 

from the US, and 13 from Italy). Most subjects had an 

engineering background (18 were engineering educators and 

73 engineering students). Every participant was asked to 

casually sketch the models shown in Figure 3.  

 

 
 

  

Fig. 3. Transparent models, built with SolidWorks, used in 

the experiment 

To help them understand the task the example shown in 

Figure 4 was provided. 

 

Fig. 4. Example shown in the instructions. 

Participants were reminded to include the hidden edges 

of the model (but to not represent them as dashed lines), and 

draw each line individually (a single stroke for each line). 

We asked them to draw all four sketches in a single piece 

of paper, which was later scanned and emailed to the 

authors. Not all the sketches we collected were included in 

the analysis. Incorrect sketches included: (a) missing 

strokes, (b) dashed hidden lines, (c) ignored short 

beautification strokes and (d) overtraced sketches. We 

discarded 44 sketches from model 1, 25 from model 2, 24 

from model 3 and 43 from model 4. All from engineering 

students. We guess that Model 4 frequently included missing 

lines because of its complexity, while missing lines in Model 

1 where possibly due to its point of view or orientation. 
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The participants’ sketches were vectorized manually by 

the authors and the line drawings parsed against the “ground 

truth” of the vertices of the models. Since the subjects were 

asked to replicate four particular models, we assume they 

tried to replicate the junctions of the model. Thus, our 

algorithm was used to calculate which of those junctions 

were more or less frequently detected. 

Table 1 summarizes the relative frequency with which 

vertices of each model were recognized correctly (“Ok” 

column), and the frequency with which some unexpected 

cases occurred. These cases are illustrated in Figure 5, which 

distinguishes between false negatives (first row), and false 

positives (second row). 

 

   
(a) (b) (c) 

  
(d) (e) 

Fig. 5. Unexpected results, (a) dangling lines (lines with 

valence 1), (b) short dangling lines, (c) duplicate vertices, 

(d) grouped vertices and (e) lines grouped in incorrect 

vertex. 

Table 1: Algorithm results 

 
OK (a) (b) (c) (d) (e) 

Model 1 53% 30% 0% 0% 11% 34% 

Model 2 64% 29% 3% 8% 5% 8% 

Model 3 79% 10% 0% 7% 1% 4% 

Model 4 61% 11% 28% 0% 11% 22% 

 

From the analysis of the frequencies, we can conclude 

that: 

 The algorithm does not fail in recognizing all 

vertices that are "carefully" drawn. 

 The algorithm always assigns high merits (greater 

than 0.5) to careful vertices. 

 For more imperfect vertices, the assigned merits 

are in the range [0, 0.5]. 

 The algorithm tends to leave lines without 

converging to a vertex (dangling lines) before 

making false convergences. In borderline cases of 

particular points of view (such as Model 1) the 

algorithm becomes more sensitive to casual 

vertices. 

 When the drawing contains strokes of very 

different lengths (Model 4), the algorithm finds it 

difficult to correctly group the short vertices. 

 The algorithm seems to not be susceptible to the 

direction in which the strokes are drawn. The 

general metrics we used eliminate the possible 

bias that could be introduced by drawing with the 

right or left hand. 

 

Examples with a large number of lines were not included 

in the previous figures so the junctions could be clearly 

displayed. Nevertheless, the algorithm can also solve these 

complex shapes successfully, as shown in Figure 6. 

In fact, the increase in the number of junctions is not a 

problem for the algorithm, although it was noted during the 

experiment that people tend to get tired and lose some 

junctions when faced with sketches containing a growing 

number of strokes. Thus, we cannot test the validity of the 

algorithm compared to a statistically validated human 

perception for sketches populated with increasing number of 

junctions. Still, when a reduced group of persons was asked 

to agree or disagree with the junctions detected by the 

algorithm, the answer was always positive (although 

sometimes accompanied by surprise, as the algorithm 

detected junctions unnoticed by some people at first sight). 

 

 
 

Fig. 6. Careful sketch of a complex 3D polyhedral shape 

To further test the merits provided by the algorithm, we 

selected careful and casual sketches of 2D shapes (see 

Figure 7 for some representative examples), as well as 

careful and casual sketches of 3D polyhedral shapes (see 

Figure 8 for some representative examples). 

  
(a) 

 
 

(b) 
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(c) 

Fig. 7. Careful and casual sketches of simple 2D shapes, 

with their merits 

 

 
 

 

 

 
 

Fig. 8. Careful and casual sketches of 3D polyhedral 

shapes, with their merits 

In most of the examples we tested, the perceptually 

correct solution was successfully found by the algorithm. 

Generally, neither false junctions were detected, nor close 

but different junctions were merged. In the worst cases, only 

certain junctions were incompletely merged (see Figure 9). 

Furthermore, the merits seem to be in accordance with the 

probability of the junctions to be perceived as such by 

humans. However, the algorithm is clearly sensitive to the 

thresholds defined as parameters (see Table 2). For this 

reason, some intersections perceived as junctions by humans 

are not perceived correctly by the algorithm when tuned with 

the default parameters (which were conservatively defined 

to prevent false positives). 

 

  

Fig. 9. Casual sketch out of range for the proposed 

thresholds 

Tips of exceedingly casual sketches can still be safely 

grouped—thus reducing false negatives—if the thresholds 

are increased, which is acceptable only if different corners 

are not too close to each other. For instance, by increasing 

parameter maxDist up to 13%, the casual star from Figure 9 

can be solved correctly. The same occurs for example 6 in 

Figure 2, which is correctly solved by increasing maxDist to 

10%. Similarly, example 3 in Figure 8 is correctly solved by 

increasing maxDist to 14%. However, arbitrarily increasing 

the parameters is prone to produce false positives, as shown 

in Figure 10, where the parameter maxDist was increased to 

34% for the star in Figure 9, but barely 9% for the prism on 

the right side of Figure 1. 

 

  

Fig. 10. Casual sketches solved with false positives 

 

Reducing maxDist (from 8% to 4%, for example) would 

prevent the algorithm from accepting casual junctions, while 

increasing it (up to 20%) would allow the algorithm to detect 

very poorly sketched junctions (but would also produce the 

incorrect merge of close junctions). Thus, the parameter may 

vary from less than 5% for careful and/or dense sketches up 

to 20% for those very casual but not dense (“dense” sketches 

are those with nearly overlapping junctions). Similarly, 

reducing the valid range by half (inTol= 25% and outTol= 

12%) prevents the algorithm from detecting false positives 

in dense careful sketches. 

Varying threshold values is not recommended. Our 

belief is that most false positives (tips merged to define non-

perceived junctions) will be hard to repair by users, whereas 

false negatives (junctions perceived by humans but not fully 

merged by the algorithm) can be clearly identified and are 

easy to edit manually (or in a subsequent automatic merging 

stage that could take advantage of global information). Still, 

while a balanced set of parameters is recommended, valid 

configurations for careful and casual sketches are tabulated 

in Table 2. 
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Table 2: Recommended algorithm configurations 

Parameter Careful Balanced Casual 

maxDist 12% 8% 4% 

maxRot 5° 10° 10° 

RM 0.2 0.5 0.8 

Valid range: inTol 25% 50% 50% 

Valid range: outTol 12.5% 25% 25% 

maxDistTriplets 5% 10% 15% 

ETM 0.2 0.5 0.8 

maxDistDangling 5% 10% 15% 

 

The first and second configurations are valid for the two 

types of sketches represented in Figure 1, as the first 

prioritizes reification, while the second prioritizes 

emergence (and both configurations output similar merits). 

Higher values of maxDist are useful to detect lines that do 

not intersect close to each other (Figure 3 middle in 

[CVPC18]), but are counterproductive to detect lines with 

long tails (Figure 3 right in [CVPC18]), as the tips of the 

long tails may be close to an adjacent junction (Figure 10, 

right). We note that reducing maxDist nearly cancels 

reification, thus preventing poorly drawn tips of neighbor 

junctions from emerging to produce false reified junctions. 

Examples of the type of extremely casual—and/or 

moderately dense—sketches parsed by the third 

configuration are shown in Figure 11. 

 

  

  

 

Fig. 11. Extremely casual sketches, which can be parsed by 

the third configuration in Table 2 

We note maxRot is independent on the size of the line, 

as we realized that humans perceive and are highly sensitive 

to even small rotations, irrespective of the length of the line. 

Furthermore, we observed that people tend to accurately 

determine the orientation of close lines, thus allowing the 

algorithm for large rotations to result in merging endpoints 

of lines intended to be parallel. Hence, in an attempt to avoid 

false positives, we opted for a strategy that may produce 

false negatives for short, isolated and poorly drawn lines. 

The established merits could be used to implement a 

dichotomous algorithm by simply considering valid those 

candidate junctions with merits greater than a fixed 

threshold (in accordance with Table 2). Thus, a threshold 

over 0.5 implies accepting only good junctions (which 

mainly include careful tips separated by less than 

maxDist/2), a threshold of 0.25 results in accepting good and 

average junctions (which mainly exclude casual tips 

separated by more than maxDist/2), and a threshold of 0 

accepts all the merged junctions. 

The algorithm is not intended to segment “passing” 

strokes (i.e., strokes that encompass two lines that should be 

split and connected to a close junction). For instance, the 

stroke that connects tips 0 and 2 in Figure 12 is not split into 

segments 0-6 and 6-2, which would better represent the 

wireframe of the depicted polyhedral shape. This is a future 

development that requires global considerations (regarding 

the so-called T-vertices, and possibly using information 

about faces), to prevent false positives such as the one that 

could easily appear in the wedge (sketch h) in Figure 2. 

 

Fig. 12. Junctions (and merits) of a casual sketch of a 

polyhedral shape, were a passing line (0-2) was not 

merged to a near junction (6) 

 

Finally, the current version of our algorithm is still 

unable to automatically solve extremely casual sketches 

with dense (nearly overlapping) junctions. This problem is 

not considered a limitation of our current algorithm, as it is 

mainly associated with casual sketches that do not depict 3D 

polyhedral shapes but flat patterns. Although some of these 

sketches could still be solved by suitably tuning our 

algorithm, we are still unable to automatically detect the type 

of the sketch. As a result, the algorithm needs to be re-tuned 

manually for every sketch type. 

The experiment has shown that people also doubt and 

disagree when perceiving casual sketches, mostly if the 

sketches are also dense. Thus, the sensitivity of the 

algorithm cannot be considered a fault, as it replicates 

human behavior. The important thing is that the algorithm 

quantifies the level of uncertainty, thus allowing for a 

subsequent vectorization stage to solve those dubious 

junctions by using global information about the depicted 

model. We speculate that sketches that are drawn so poorly 

cannot be fully interpreted by providing local information 

only. Instead, global scene information is required for 

interpretation. It is only after assuming that Figure 9 depicts 

a four pointed star that finding their junctions becomes easy. 

Similarly, humans perceive the top corner of Figure 13 

because the sketch is perceived as a pyramid. 
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Fig. 13. Casual pyramid not solved by the default 

configuration of the algorithm which searches for local 

junctions without global information about the drawing. 

 

 

5. Conclusions 

Detection of vertices is an important and useful stage in 

Sketch-Based Modeling research. However, current 

methods for vertex detection are still ineffective when 

applied to casual sketches. 

In this paper, we described an improved approach for 

determining the vertices of 2D line drawings. The algorithm 

detects junctions—which are likely to correspond to vertices 

of the depicted object—based on a local interpretation 

approach. The universe of drawings is limited to polyhedral 

shapes, but our method works with line drawings derived 

from both careful and casual sketches and does not require 

any information other than vectorized lines. 

Our hypothesis that carefully sketched vertices must be 

reified, while casually sketched vertices must emerge, was 

indirectly validated, as it guided the design and 

implementation of an algorithm that improves on previous 

vectorization techniques, which were based exclusively on 

reification strategies. 

The perceptual essence of the algorithm combined with 

its sequential detection provides efficiency, since the 

algorithm initially fixes the best defined junctions, which 

makes them difficult to distort during subsequent iterations. 

Our approach quickly and correctly detects vertices in 

line drawings of polyhedral objects that have been 

vectorized from hand-drawn sketches. Vertices of 

polyhedral shapes depicted by highly casual sketches can 

still be detected provided that the sketch does not contain 

extremely close junctions. In addition, our tests suggest that 

our method, if re-tuned, may also be useful for other 

sketched shapes. 
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