
Automated Sketching and Engineering Culture

Peter Varley and Pedro Company
Dept. of Mechanical Engineering and Construction. Universitat Jaume I (Spain)

<varley@emc.uji.es>,<pcompany@emc.uji.es>

Abstract

In this paper we argue that sketching is an

essential part of engineering culture. If current
CAD tools cannot support sketching, it is the
tools, not the culture, which must change.

We then consider how close we are to having
Computer-Aided Sketching tools which meet the
requirements of traditional engineering culture.
This discussion considers three categories of
sketch: thinking sketches, used to focus and guide
non-verbal thinking; talking sketches, employed to
support discussion of the design with colleagues;
and prescriptive sketches, which give instructions
to the draftsman in charge of making the finished
drawing.

1. Introduction

It has been said that “The real danger is not
that computers will begin to think like men, but
that men will begin to think like computers” (the
quotation is attributed to S.J. Harris). It has also
been said that “If you have a hammer, every
problem looks like a nail” (the quotation is
anonymous). How we work, and even how we
think, is constrained by the tools we habitually
use.

In the past, engineering designers made much
use of pencil and paper, those being the tools they
had available. As a result, the ability to create and
understand sketches became a necessary part of
engineering culture. We discuss the advantages
and limitations of pencil and paper sketching in
Section 2.

It is clear that use of current CAD tools can
overcome some of the limitations of pencil and
paper sketching. It is, unfortunately, also the case
that use of current CAD tools also loses many of
the advantages of pencil and paper sketching. We

discuss this too in Section 2.
If engineering culture were simply to accept

that the ability to use CAD tools is an additional
necessary skill, there would be no problem.
However, there are those (e.g. [3]) who argue that
CAD can replace sketching, that sketching should
be considered old-fashioned and that it can be
discarded from the set of necessary engineering
skills. We disagree entirely with this latter
viewpoint.

Ideally, what we should want would be tools
which combine the advantages of sketching with
those of CAD. The rest of this paper discusses
how close we are to creating such tools. Where
specific examples are required, we focus on work
to which we have made personal contributions,
while noting those various places where the work
of others is in advance of our own.

Unlike Olsen et al [27], which classifies
sketch-based tools as viewed by the tool-maker
(e.g. by data types and operations supported), we
prefer to subdivide our survey using a
classification proposed by Ferguson [8] which
considers them from the point of view of the user:
Section 3 discusses thinking sketches, used to
focus and guide non-verbal thinking; Section 4
discusses talking sketches, employed to support
discussion of the design with colleagues; and
Section 5 discusses prescriptive sketches, which
give instructions to the draftsman in charge of
making the finished drawing.

Finally, Section 6 summarises our conclusions
and highlights the most pressing areas for future
work.

2. Sketching: Pros and Cons

 “The pencil has been called the most potent
instrument in the world, for it gives most of man’s
thought and aspirations their first visible form”
[2].

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 83

Ferguson [8] notes that two designers never
just sit down and talk. They draw sketches for one
another. Designers even take the pencil from one
another as they talk and draw together on the
same sketch. Such sketches will continue to be
important in the process of going from vision to
artefact, as they make it easier to explain a
technical point, because all parties in a discussion
share a common representation of the idea being
debated.

Recent studies, e.g. Chamorro et al [4], have
show that visual representations of concepts are
also useful for enhancing communication between
users and designers, by enabling identification of
differences between designers’ and users’
concepts of the product.

The Engineering Design Graphics Division of
the American Society for Engineering Education
(ASEE) identifies the ability to sketch engineering
objects freehand as the second most important
skill to be learnt by students of engineering [1].
This conclusion is supported by the American
Society of Mechanical Engineers (ASME) [31].

Teachers of engineering design continue to
produce textbooks which instruct their students in
the techniques of creating and understanding
sketches (Lieu and Sorby [18] is a recent addition
to this literature).

We can conclude from this that sketching is a
vital part of the culture and tradition of
engineering design.

However, graphical literacy has recently
suffered a decline. New engineers often have
inadequate experience in making sketches by hand
in order to effectively communicate information
graphically. As a result of using computer-aided
drafting in both engineering education and
professional practice, hand-sketching skills have
been overlooked ([12,22,31]). Also, some
engineers when faced with conceptual design now
rely more on verbal and numerical synthesis tools
than on graphical ones [38] since the scope of
graphical tools is supposed to be limited to
detailed design and manufacturing specification.

The main weakness of paper-and-pencil
sketching comes from the fact that after a final
sketch has been obtained and the conceptual
design is complete, the designer must create the
CAD model from scratch. Important as it is,
sketching activity cannot remain disconnected
from the rest of the design process.

However, commercially available CAD tools
with some “pseudo-sketching” capabilities are far
from being a satisfactory alternative to sketching.

Current CAD tools push designers in precisely the
wrong direction. As Jonson [12] says: “the
computer encourages the user to go straight into
the finished work without the critical and creative
thought period”.

Such a process is far from being genuine
sketching, where incomplete and ill-defined
geometries actually germinate from the designer’s
mind’s eye.

It is, perhaps, for this reason that many
designers still use paper-and-pencil sketches, and
any tools we offer them must offer them
significant additional functionality in addition to
duplicating all of the functionality which they
already enjoy. We identify, as significant
advantages of CAS over paper-and-pencil: easy
storage and transfer; limitless drawing space
(zooming and other virtual-paper navigation tools
convert the limited screen surface into limitless
virtual paper); and edit capabilities (erasing,
copying, resizing and other transforming
operations help to convert the virtual-pen into a
more effective tool than the conventional pen).
Finally, digital representation allows the sketches
to be integrated into a product lifecycle
management system.

3. Thinking Sketches

Conceptual design is a complex process and
one which is poorly understood [29]. In a sense,
design is a process of discovery [11]: it is the
refinement of thought by means of visual imagery.

Sketches are more useful than line-drawings
during this thinking process, since a designer can
focus on the creative aspects of his work, not
spend time on routine aspects such as managing
rule and compass, drawing auxiliary construction
or calculating coordinates and entering data into a
CAD package. The visual feedback of a drawing
enables an experienced designer to see instantly
what his sketch implies, and if he does not like it
he can draw something else without having
wasted any time.

Menezes et al. [25] observe that interaction
with drawings seems to be even more relevant to
designers than the physical skill of drawing. As a
result, the simple “what you draw is what you
imagine” interface provided by pencil and paper
continues to be useful as it is less distracting than
a set of drawing devices, and will continue to be
useful if it is provided by a pen and tablet (rather
than by an array of menus and icons).

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 84

In this section we only consider recent
developments. For older work, we refer the reader
to surveys by Wang and Grinstein [39] and
Company et al [6]. Of the variety of approaches
which these surveys discuss, essentially only two
satisfy our requirement for a natural sketching
interface: interpretation of wireframe drawings
(drawings where hidden lines are shown), and,
most natural of all, interpretation of natural line
drawings (drawings which show only those lines
visible from a particular viewpoint).

3.1 Design Intent
One problem which must be addressed

regardless of the type of drawing processed is the
problem of design intent. What object did the
sketcher have in mind when creating the sketch?

For example, Figure 1 shows a simple example
of the design intent problem. Clearly, if the user
intended to draw a cube, the central vertex is
misplaced. Was this, or was this not, deliberate?

Figure 1: Misplaced Vertex?

Figure 2: Tray or Ring?

Figure 2 shows a more subtle example, and one

which could realistically occur in practice. The
height of the central feature is slightly less than
the height of the bounding box. Is this, or is this
not, deliberate? Depending on which
interpretation we choose, we get a different object.
If we assume that the difference was deliberate,
the central feature is a pocket, and the object is a
tray. If we assume that the difference was
accidental, the central feature is a through hole,
and the object is a ring.

Although these two figures show natural line
drawings, it can readily be seen that the same
problems would exist when trying to interpret the
corresponding wireframe drawings.

So how is it possible, just by analysis of pencil
strokes, to determine what was in a designer’s
mind?

In practice, by making assumptions about
engineering objects and the ways people see and
depict them, it is often possible to reproduce a
single object which humans will agree is the best
interpretation of the drawing.

We believe that we should assume certain
regularities whenever it is reasonable to do so.
These regularities should be those which are
readily perceived, chiefly perpendicularity and
symmetry. In addition to the cognitive paradigm
that if the user sees them, they should be there,
some regularities may have a particular role in
applications such as structural analysis. Symmetry
is the most obvious case. The importance of
symmetry in engineering design is well-known
(see, for example, [33]), and one classic use of
symmetry is to reduce the computational effort in
analysis of structures by simplifying the models.

3.2 Wireframe Drawings
We are now close to having robust methods for

interpretation of wireframe drawings. This is
usually done in two stages: identify those loops of
edges in the drawing which correspond to faces;
and inflate the drawing into 3D while keeping the
face loops planar. For the former, the approach of
Liu, Lee and Cham [21] is robust and usually
adequately fast in practice, the approach of Varley
and Company [36] is also robust and faster, and
an idea proposed by Li [17] promises to be faster
still. For the latter, Martin et al [23] provide a list
of useful techniques, many of which were
originally suggested by Lipson and Shpitalni [20].

The most serious outstanding problem is the
one touched on in the previous section, that of

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 85

design intent. In particular, which loops of edges
should be not merely parallel but coplanar? Piquer
et al [28] address this for symmetrical objects, but
no robust general solution exists.

Current research now concentrates on
interactive interpretation of sketches: what
assistance can be given to the sketcher while
sketching is in progress?

CIGRO [7] was developed in order to study the
feasibility of using progressive interactive

interpretation of freehand sketches to create 3D
geometry. CIGRO interactively reconstructs
polyhedral objects from freehand sketches to yield
three-dimensional models. In the current
implementation, the geometric domain is
restricted to quasi-normalons.

One key characteristic of CIGRO is its
minimalist interface based on only three gestures:
create geometry line, create auxiliary line, and
delete.

a)

b) c) d)

e)

f)

g)

h)

i)

j) k)

l)

m)

n)

o) p)

Figure 3. Modelling sequence in CIGRO

The user creates a new object by performing a
pseudo-axonometric drawing of it. Usually the
first step is the definition of the main directions
(Figure 3.a).

CIGRO supports creation of complex objects
by blocking them in within a frame of
construction lines (in Figure 3.a and 3.b the
beautified auxiliary lines are shown as dashed
lines). Construction lines, drawn by applying low
pressure with the stylus, can then be used for
snapping or over-sketching (Figure 3.d) the
desired geometry lines. This is common practice
in engineering drawing, as blocking in the main
features of a part not only simplifies sketch
construction, but also allows the creation of
complex parts from simple geometry.

CIGRO comprises a simple gesture analyser, a
line-drawing beautifier and an axonometric

inflation engine.
In order to support interactive operation, the

axonometric inflation engine provides tentative
3D models. This allows users to see the current
3D model as they complete the sketch. As soon as
the system detects a complete face, it is shaded
automatically (see shaded faces from Figure 3.e to
3.h). Users can change the point of view whenever
they like, and proceed with sketching (example in
Figure 3.d to 3.m). Removal of undesired edges is
performed drawing a scratch stroke, which is
interpreted as a delete command (as seen in
Figures 3.j and 3.n).

We have found in practice that, when they are
used to create geometry from scratch, users ask
for some kind of assistance with repetitive tasks,
such as drawing all the edges in extrusion-like
objects, or a symmetry operator to construct

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 86

symmetric shapes by only drawing half. In order
to improve the usability our CAS tools, we should
provide such extended drawing commands. In
order to maintain the simplicity of CIGRO’s user
interface, these commands will be implemented as
gestures, in the same way that the delete
command is currently implemented as a gesture.

Another practical observation (based on both
our own experience and that of [19]) is that it is
important to remind the user that sketching is
tentative, not definitive. To this end, we are
currently implementing a non-photorealistic
renderer to preserve the “sketchy” look of objects
created from freehand sketches. Figure 4 shows an
example of an object rendered “sketchily”.

Figure 4. A “Sketchy” Object

3.3 Natural Line Drawing

The problem of interpreting natural line

drawings is inherently more difficult than that of
interpreting wireframes: what is around the back
of the object?

RIBALD [34] is an attempt to interpret natural
line drawings as objects, creating a boundary-
representation solid model of the object which the
drawing portrays. There are more recent programs
with more natural user interface than RIBALD
(e.g. [16] and [24]), but none of them add
anything to the art of interpreting drawings.

The underlying assumption is that the correct
interpretation of the drawing is the object an
engineer would regard as the most reasonable
interpretation of the drawing. By defining the
correct interpretation as we do, we place the
problem of interpreting drawings firmly in the
realm of engineering culture, not of abstract
mathematics.

For example, while there are infinitely many
objects which could result in the drawings in
Figure 5, in practice, an engineer would be in little
doubt as to which was the correct interpretation.

Figure 5. Natural Line Drawings

RIBALD is fully-automatic, requiring no

manual intervention except for creation of the line
drawing.

The other requirement in producing RIBALD
was that the 3D model should be produced
quickly: ideally, within a second. Such rapid
feedback would not merely remove a bottleneck
in the design process but could improve it by
allowing designers to refine their ideas while they
were still fresh in their minds.

RIBALD interprets line drawings in a three-
stage process: (a) create the frontal geometry, in
which everything visible in the natural line
drawing is given a position in 3D space; (b) add
the hidden topology, the occluded part of the
object not visible from the chosen viewpoint, and
(c) beautify the geometry of the completed
object—beautification of solid models is an area
of active research in its own right, with
applications in other fields such as reverse
engineering, and is not discussed further here.
RIBALD does not itself convert the engineer's
original freehand sketch to a line drawing—this is
regarded as a separate problem, considered in
Section 3.1 above.

The three most important aspects of frontal
geometry are (a) line labels—which lines in the
drawing correspond to convex, concave and
occluding edges of the frontal geometry; (b) line
parallelism-which groups of lines did the designer
intend to correspond to parallel edges; and (c)
inflation to 2½D by assigning depth coordinates to
vertices.

It is found that performing these three tasks
sequentially, in any order, presents difficulties, as
each yields information useful to the others. For
example, given an object which has already been
inflated correctly, determining the line labels is
trivial, but inflating an object correctly without
knowing which vertices touch faces and which
vertices occlude faces presents problems. On the
other hand, while labelling genus-zero trihedral

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 87

drawings is trivial (e.g. using Kanatani’s
algorithm [15]), labelling uninflated drawings
with higher-order vertices is unreliable at best
[35].

Approaches which iterate these steps, or
perform them in parallel, are to be preferred, but
even here there remains work to be done before
our objectives of speed and robustness are met
[37].

RIBALD constructs hidden topology by
performing a greedy search through the space of
possible additional topology. This is successful in
the cases shown in Figure 6. It will be noted that
the more restrictive the search domain, the more
successful the search—quite complex trihedral
normalons can be constructed, but the
construction of general (non-trihedral, non-
normalon) polyhedra is very limited.

Figure 6: Completed Objects

Recent attempts to improve RIBALD’s greedy

approach by advance detection and avoidance of
error conditions has made little practical
difference to the robustness of the method, and it
may be necessary to look elsewhere for a good
approach.

Grimstead [10] suggested treating planes as
half-space separators, faces as patches of planes,
and edges as half-space operators (convex edges
are “intersection” and concave edges are “union”).
Our preliminary investigations found this idea to
be hard to implement even for normalons, and the

results were unimpressive.An alternative idea,
suggested as long ago as Roberts [30] and shown
by Suh [32] to be a practical approach to
constructing hidden topology, is to use simple
polyhedra as half-spaces (Roberts suggested using
cuboids; Suh’s implementation uses extrusions of
polygonal end-caps).

Suh’s implementation assumes an
accurate drawing. It remains to be seen
whether or not it can be extended
successfully to freehand drawings, which will
inevitably contain drawing errors.It can be
noted that Suh’s approach is inevitably suboptimal
as a design tool. On the one hand, it is not an ideal
method of interpreting line drawings, since it is
inherently restricted to drawings of objects which
can be decomposed into extrusions of polygons.
On the other hand, it is not an ideal tool for design
engineers, since if we are to model objects as
unions and intersections of extrusions we should
allow the design engineer to enter the extrusions
in 3D the first place rather than insisting that he
draw a 2D natural line drawing which the program
interprets as extrusions.

Nevertheless, in the absence of any
significant improvement to RIBALD’s greedy
approach, it is Suh’s approach which represents
the state of the art.

4. Talking Sketches

By definition, the intended audience of talking
sketches is people, not computers. Why should
anyone should be interested in automatic
interpretation of talking sketches? We identify two
possible answers.

Firstly, as the design process becomes more
complex (as do its products!), more and more of
the process is recorded. We can safely forecast
that, in the near future, talking sketches will be
recorded as soon as the required hardware (tablet
PCs and the like) becomes commonplace.

Secondly, computers cannot manage data
properly without having some ability to interpret
it. As soon as recording of talking sketches
becomes established practice, interest will grow in
how computers can be made to understand them.

Jonson [13] documents some recent
developments from the Computer Support
Collaborative Work (CSCW) community which
are aimed at both collaborative creation and the
sharing of 2D sketches.

However, little work has been done in the field

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 88

of automatic interpretation of talking sketches and
converting them into 3D digital models. Although
talking sketches are clearly going to be an
important area in the near future, there is much
work remaining to be done.

Figure 7. 3D model of a shaft (above) and
its prescriptive sketch (below)

5. Prescriptive Sketches

Prescriptive sketches such as the one in Figure
7 are technical drawings which contain detailed
information describing a final design. They
contain a full set of views complemented by
symbolic information conveyed through
standardised symbols. They only differ from
detailed design drawings in that the views, while
containing a detailed description of the shape and
a rough estimation of metric properties, need not
be geometrically perfect.

Prescriptive sketches include standardised
symbolic information (see “technical drawings” at
www.iso.ch or www.asme.org) which can be
classified into: (a) Pseudo-textual symbols which
identify very common shapes—the “diameter”
symbol (Ø) is the most common; (b) Graphic
symbols which conventionally simplify and/or
highlight a true geometrical feature of the product.
Hatching linked to cut views (ISO 128) is the
most common of this kind of symbol. Splines and
serrations (ISO 6413), gears (ISO 2203), and
screw threads and threaded parts (ISO 6410),
among others, show the complexity of this class

of symbol; and (c) Multi-iconic symbols which
convey a complex product’s features. Dimensions
(ISO 129) are by far the most common example of
such symbols. Numerous manufacturing symbols
(e.g. welding symbols), tolerancing and kinematic
diagrams also belong to this category.

In current industrial practice, only pencil and
paper prescriptive sketches are used. However,
with the spread of CAS environments,
prescriptive sketches will play a more important
role in design.

Prescriptive sketches are harder to interpret
than other types of sketch as they convey richer
symbolic information. Automatic interpretation of
prescriptive sketches has much in common with
automatic interpretation of blueprints, which field
is somewhat in advance of our own. There are,
however, differences. We note, for example, a
recent paper by Gong et al [9] describing a
method for segmenting blueprints. This work
relies on the geometry of the blueprint data being
accurate, and it is not yet clear whether or not it
can be transferred to the field of prescriptive
sketches.

ParSketch [26] is a prototype application
developed in order to investigate and address the
problems posed by prescriptive sketches. It
implements our minimal interface concept by
providing a sketching environment which is free
of menus and icons. We are now taking this idea
further with a version aimed at sketch-based
structural pre-processing [5].

ParSketch interprets strokes which can be
recognised as geometry (line, arc, circle, ellipse,
or composed entities which are automatically
segmented into these basic entities), and symbols
representing constraints (dimension, parallel,
perpendicular, tangent, concentric, horizontal or
vertical). Unwanted drawing entities can be
removed using a scratching gesture. This not only
allows errors to be corrected, but also enables
more complex shapes to be drawn incrementally,
by refining simpler forms.

New gestures can be added to the system by
providing new samples to the gesture recogniser.

At present the system uses pen pressure to
decide whether input corresponds to geometry or
to gesture strokes: high pressure means a
geometry stroke, while low pressure means that
the stroke is interpreted as a gesture. Both
geometry and gesture analysers make use of two
geometric signatures: the direction and curvature
graphs of each stroke.

The user creates geometry by drawing a

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 89

freehand sketch directly on a Tablet-PC screen.
The recognition engine cleans up input data and
adjusts edges to make sure they meet precisely at

common endpoints in order to obtain
geometrically consistent figures.

a)

b)

c) d)

e)

f)

g)

h)

i)

j)

k)

l)

Figure 8. Drawing sequence in ParSketch

Figure 8 shows an example of interaction with
ParSketch. The user draws the whole contour in
8.a. A single stroke is accepted as input, and is
decomposed into six rectilinear and connected
strokes. The application shows the beautified
version (8.b), and the user adds another complex
stroke composed by two segments and one arc
(8.c). The geometry is then beautified (8.d).

Figure 8.e shows the use of the scratching
gesture to refine the object topology. ParSketch
interprets this gesture as an order to delete those
geometric entities intersecting the smallest
quadrilateral which encloses the gesture.

Next, a parallelism constraint is applied by
sketching its associated gesture over the two
segments to be made parallel (see 8.f, 8.g, 8.h).

Once the desired shape has been obtained, we
can proceed with dimensioning. Figure 8.i shows
a dimension gesture without any text. ParSketch
interprets this as a measure command, and shows
the current value of that dimension (8.j). The user
can change the current dimension value by writing
the new value next to the current one. ParSketch
responds by recalculating its model of the object
and displaying the new geometry (8.k and 8.l).

Graphic symbols which represent conventional
features are multi-iconic, and are the most
challenging problem posed by prescriptive

sketches. Strategies such as “multi-agent systems”
[14] appear to be the most promising approach for
recognising them.

While recognition of handwritten text is now
reasonably robust, it benefits from the advantages
that text characters are generally grouped together,
all of a similar size, and all aligned with one
another. Dimensions and hatching (see Figure 7),
amongst others, do not have these advantages.
Recognition of such complex standardised
symbols is a current challenge.

While single-view approaches are currently the
most suitable for automatic 3D reconstruction [6],
single-view representations are not the only ones
used while designing (ISO 128 and ISO 5456-2
versus ISO 5456 parts 1 and 3). A true CAS
system aimed at covering the entire range of
conceptual design should be able to deal with both
single views (axonometric and the like, usually
associated with thinking sketches), and multiple
orthographic views, which are more oriented
towards prescriptive sketches.

6. Conclusions and Future Work

The engineering community considers
sketching to be a vital skill for current and future

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 90

engineers. However, current commercial CAD
applications are not suitable tools for integrating
conceptual design (where sketches dominate) and
detailed design (where 3-D modelling is central).
True CAS tools, oriented towards engineering
design, are required.

In previous sections, we have shown that CAS
is viable. If is to become an everyday reality, it
must in addition be well-behaved: it must not
present the user with unpleasant surprises. An
ideal tool is one which is so predictable that it
becomes invisible: use of it is so automatic that
the user can concentrate on creating a design
without even having to think about how to use the
tool.

As well as being well-behaved, a tool must also
be useful. Specifically, it must provide all of the
functionality which is provided by the WIMP
tools which it is to supersede. It must, of course,
also provide all of the functionality provided by
traditional paper-and-pencil sketching.

We argue that usability is best served by the
concept of a minimal interface, where we keep
user interaction as paper-like as possible.
Recognition of standard symbols already in
common use also makes an important contribution
to usability.

At present, we cannot say with confidence that
such tools are more usable than paper and pencil.
The problem is one of fine-tuning. In the hands of
an experienced sketcher, a pencil is a subtle tool
which can be used to produce a wide variety of
effects. We are not, as yet, able to reproduce this
subtlety while tracking the movements of a
computer pen. Further investigation of the
physical act of sketching, and how it may be
tracked automatically, is required.

In terms of functionality, the capability of
Computer Aided Sketching tools to create models
of practical interest to engineering designers is
limited: curved surfaces are still not supported.

7. Acknowledgements

This work was supported by the Spanish
Ministry of Science and Education and the
European Union (Project DPI2007-66755) and by
the Ramon y Cajal Scholarship Programme.

8. References

[1] R.E. Barr, (2004). The Current Status of Graphical
Communication in Engineering Education. 34th
ASEE/IEEE Frontiers in Education Conference.
October 20–23, 2004, Savannah, GA. S1D8–13.

[2] P.J. Booker, (1979), A History of Engineering
Drawing. Northgate Publishing Co. London.

[3] R.O. Buchal, (2002). Sketching and Computer-
Aided Conceptual Design. Proceedings of the
International Conference on Computer Supported
Cooperative Work in Design 7, 112–119.

[4] M. Chamorro-Koc, V. Popovic and M. Emmison,
(2008). Using visual representation of concepts to
explore users and designers' concepts of everyday
products. Design Studies 29 (2), 142–159.

[5] P. Company, N. Aleixos, F. Naya, P.A.C. Varley, M.
Contero and D.G. Fernandez-Pacheco, (2008). A New
Sketch-Based CAE Pre-Processor. 6th International
Conference on Engineering Computational Technology.
Athens, Greece.

[6] P. Company, A. Piquer, M. Contero M. and F. Naya,
(2005). A Survey on Geometrical Reconstruction as a
Core Technology to Sketch-Based Modeling.
Computers & Graphics 29(6), 892–904.

[7] M. Contero, F. Naya, J. Jorge and J. Conesa, (2003).
CIGRO: a Minimal Instruction Set Calligraphic
Interface for Sketch-Based Modeling. Lecture Notes in
Computer Science. Volume 2669, 549–558.

[8] E.S. Ferguson, (1992). Engineering and the Mind's
Eye, MIT Press.

[9] J.H. Gong, H. Zhang, B. Jiang and J.G. Sun, (2008).
Identification of sections from engineering drawings
based on evidence theory. Proceedings of the 2008
ACM symposium on Solid and physical modeling, 13–
24.

[10] I.J. Grimstead, (1997). Interactive Sketch Input of
Boundary Representation Solid Models, PhD Thesis,
Cardiff University.

[11] Y. Huang, (2008). Investigating the cognitive
behavior of generating idea sketches through neural
network systems. Design Studies 29 (1), 70–92.

[12] B. Jonson, (2002). Sketching now. International
Journal of Art & Design Education, 21-3, 246–253.

[13] B. Jonson, (2005). Design ideation: The
conceptual sketch in the digital age. Design Studies 26
(6), 613–624.

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 91

[14] R. Juchmes, P. Leclercq and S. Azar, (2005). A
freehand-sketch environment for architectural design
supported by a multi-agent system. Computers &
Graphics 29(6), 905–915.

[15] K. Kanatani, (1990). Group-Theoretical Methods
in Image Understanding, Number 20 in Springer Series
in Information Sciences, Springer-Verlag.

[16] D.C. Ku, S.F. Qin and D.K. Wright, (2006). A
Sketching Interface for 3D Modeling of Polyhedron.
Proc. Eurographics Workshop on Sketch Based
Interfaces and Modeling (SBIM06), Sept 03-04, 2006,
Vienna, Austria, 83–90.

[17] H. Li, (2006). nD Polyhedral Scene Reconstruction
from Single 2D Line Drawing by Local Propagation,
LNAI 3763 169–197.

[18] D. Lieu and S. Sorby (2008). Visualization,
Modeling And Graphics For Engineering Design.

[19] S. Lim, S.F. Qin, P. Prieto, D. Wright and J.
Shackleton, (2004). A Study of Sketching Behaviour to
Support Free-Form Surface Modelling from On-line
Sketching. Design Studies. 25. 393–413.

[20] H. Lipson and M. Shpitalni, (1996). Optimization-
Based Reconstruction of a 3D Object from a Single
Freehand Line Drawing, Computer Aided Design 28(8),
651–663.

[21] J. Liu, Y.T. Lee, and W.K. Cham, (2001).
Identifying Faces in a 2D Line Drawing Representing a
Manifold Object, IEEE Transactions on Pattern
Analysis and Machine Intelligence 24(12), 1579–1593.

[22] V. Livshits and B.Z. Sandler, (1999).
Upstairs/Downstairs in Technical Education: The
Unsettling Effects of Computerization. International
Journal of Technology and Design Education 9, 73–84.

[23] R.R. Martin, P.A.C. Varley and H. Suzuki, (2005).
Perpendicularity as a Key to Interpreting Line
Drawings of Engineering Objects, Proc. Digital
Engineering Workshop: 5th Japan-Korea CAD/CAM
Workshop, 115–120.

[24] M. Masry and H. Lipson, (2005). A Sketch-Based
Interface for Iterative Design and Analysis of 3D
Objects. in ed. J. F. Hughes and J. A. Jorge, Sketch-
Based Interfaces and Modelling, Eurographics
Symposium Proceedings,109–118.

[25] A. Menezes and B. Lawson, (2006). How
Designers Perceive Sketches. Design Studies 27 (5),
571–585

[26] F. Naya., M. Contero, N. Aleixos and P. Company
(2007). ParSketch: A Sketch-Based Interface for 2D

Parametric Geometry Editor. Lecture Notes in
Computer Science. HCII 2007. Vol. 4551, 115–124.

[27] L. Olsen, F. Samavati and J.A. Jorge, (2008). A
Taxonomy of Modeling Techniques using Sketch-Based
Interfaces, Eurographics 2008 State of the Art Reports,
Crete.

[28] A. Piquer, R.R. Martin and P. Company, (2004).
Skewed Mirror Symmetry for Depth Estimation in 3D
Line-Drawings. Lecture Notes in Computer Science.
GREC 2003 Post-proceedings. Volume 3088, 138–149.

[29] A.T. Purcell and J.S. Gero, (1998). Drawings and
the design process. Design Studies 19 (4), 389–430.

[30] L.G. Roberts, (1963). Machine Perception of
Three-Dimensional Solids. PhD Thesis, MIT.

[31] A.T. Rose, (2005). Graphical Communication
Using Hand-Drawn Sketches in Civil Engineering.
Journal of Professional Issues in Engineering Education
and Practice. Volume 131, Issue 4, 238–247.

[32] Y. Suh, (2007). Reconstructing 3D Feature-Based
CAD Models by Recognizing Extrusions from a Single-
View Drawing, Proceedings of the ASME 2007
International Design Engineering Technical
Conferences & Computers and Information in
Engineering Conference.

[33] S.J. Tate and G.E.M. Jared, (2003). Recognising
symmetry in solid models. Computer-aided Design 35
(7), 673–692

[34] P.A.C. Varley, (2003). Automatic Creation of
Boundary-Representation Models from Single Line
Drawings, PhD Thesis, University of Wales.

[35] P.A.C. Varley, (2005). Problems For Line
Labelling: A Test Set of Drawings of Objects with
Higher-Valency Vertices, International Journal of
CAD/CAM 5 (1).

[36] P.A.C. Varley and P.P. Company, (2008). A New
Algorithm for Finding Faces in Wireframes, in
preparation

[37] P:A.C. Varley, R.R. Martin and H. Suzuki, (2005).
Frontal Geometry from Sketches of Engineering
Objects: Is Line Labelling Necessary?, Computer Aided
Design 37 (12), 1285–1307.

[38] R. Vidal, E. Mulet and E. Gomez-Senent, (2004).
Effectiveness of the means of expression in creative
problem-solving in design groups. Journal of
Engineering Design, Volume 15, Number 3, 285–298.

[39] W. Wang and G.G. Grinstein, (1993). A Survey of
3D Solid Reconstruction from 2D Projection Line
Drawings, Computer Graphics Forum 12(2), 137–158.

VL/HCC Workshop: Sketch Tools for Diagramming
Herrsching am Ammersee, Germany
15 September 2008
Editors: Beryl Plimmer & Tracy Hammond 92

